Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 9/2019

01-09-2019 | Original Article

Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views

Authors: Bastian Bier, Florian Goldmann, Jan-Nico Zaech, Javad Fotouhi, Rachel Hegeman, Robert Grupp, Mehran Armand, Greg Osgood, Nassir Navab, Andreas Maier, Mathias Unberath

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 9/2019

Login to get access

Abstract

Purpose

Minimally invasive alternatives are now available for many complex surgeries. These approaches are enabled by the increasing availability of intra-operative image guidance. Yet, fluoroscopic X-rays suffer from projective transformation and thus cannot provide direct views onto anatomy. Surgeons could highly benefit from additional information, such as the anatomical landmark locations in the projections, to support intra-operative decision making. However, detecting landmarks is challenging since the viewing direction changes substantially between views leading to varying appearance of the same landmark. Therefore, and to the best of our knowledge, view-independent anatomical landmark detection has not been investigated yet.

Methods

In this work, we propose a novel approach to detect multiple anatomical landmarks in X-ray images from arbitrary viewing directions. To this end, a sequential prediction framework based on convolutional neural networks is employed to simultaneously regress all landmark locations. For training, synthetic X-rays are generated with a physically accurate forward model that allows direct application of the trained model to real X-ray images of the pelvis. View invariance is achieved via data augmentation by sampling viewing angles on a spherical segment of \(120^\circ \times 90^\circ \).

Results

On synthetic data, a mean prediction error of 5.6 ± 4.5 mm is achieved. Further, we demonstrate that the trained model can be directly applied to real X-rays and show that these detections define correspondences to a respective CT volume, which allows for analytic estimation of the 11 degree of freedom projective mapping.

Conclusion

We present the first tool to detect anatomical landmarks in X-ray images independent of their viewing direction. Access to this information during surgery may benefit decision making and constitutes a first step toward global initialization of 2D/3D registration without the need of calibration. As such, the proposed concept has a strong prospect to facilitate and enhance applications and methods in the realm of image-guided surgery.
Literature
1.
go back to reference Aichert A, Berger M, Wang J, Maass N, Doerfler A, Hornegger J, Maier AK (2015) Epipolar consistency in transmission imaging. IEEE Trans Med Image 34(11):2205–2219CrossRef Aichert A, Berger M, Wang J, Maass N, Doerfler A, Hornegger J, Maier AK (2015) Epipolar consistency in transmission imaging. IEEE Trans Med Image 34(11):2205–2219CrossRef
2.
go back to reference Baumgartner R, Libuit K, Ren D, Bakr O, Singh N, Kandemir U, Marmor MT, Morshed S (2016) Reduction of radiation exposure from c-arm fluoroscopy during orthopaedic trauma operations with introduction of real-time dosimetry. J Orthop Trauma 3(2):e53–e58CrossRef Baumgartner R, Libuit K, Ren D, Bakr O, Singh N, Kandemir U, Marmor MT, Morshed S (2016) Reduction of radiation exposure from c-arm fluoroscopy during orthopaedic trauma operations with introduction of real-time dosimetry. J Orthop Trauma 3(2):e53–e58CrossRef
3.
go back to reference Bier B, Aschoff K, Syben C, Unberath M, Levenston M, Gold G, Fahrig R, Maier A (2018) Detecting anatomical landmarks for motion estimation in weight-bearing imaging of knees. In: International workshop on machine learning for medical image reconstruction. Springer, New York, pp 83–90CrossRef Bier B, Aschoff K, Syben C, Unberath M, Levenston M, Gold G, Fahrig R, Maier A (2018) Detecting anatomical landmarks for motion estimation in weight-bearing imaging of knees. In: International workshop on machine learning for medical image reconstruction. Springer, New York, pp 83–90CrossRef
4.
go back to reference Bier B, Unberath M, Zaech JN, Fotouhi J, Armand M, Osgood G, Navab N, Maier A (2018) X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 55–63CrossRef Bier B, Unberath M, Zaech JN, Fotouhi J, Armand M, Osgood G, Navab N, Maier A (2018) X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 55–63CrossRef
5.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3d slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3d slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral
6.
go back to reference Ghesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D (2016) An artificial agent for anatomical landmark detection in medical images. In: MICCAI. Springer, New York, pp 229–237 Ghesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D (2016) An artificial agent for anatomical landmark detection in medical images. In: MICCAI. Springer, New York, pp 229–237
7.
go back to reference Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, Comaniciu D (2017) Multi-scale deep reinforcement learning for real-time 3d-landmark detection in ct scans. IEEE Trans Pattern Anal Mach Intell 41:176–189CrossRefPubMed Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, Comaniciu D (2017) Multi-scale deep reinforcement learning for real-time 3d-landmark detection in ct scans. IEEE Trans Pattern Anal Mach Intell 41:176–189CrossRefPubMed
8.
go back to reference Härtl R, Lam KS, Wang J, Korge A, Audigé FKL (2013) Worldwide survey on the use of navigation in spine surgery. World Neurosurg 379(1):162–172CrossRef Härtl R, Lam KS, Wang J, Korge A, Audigé FKL (2013) Worldwide survey on the use of navigation in spine surgery. World Neurosurg 379(1):162–172CrossRef
9.
go back to reference Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University Press, Cambridge. ISBN 0521540518 Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University Press, Cambridge. ISBN 0521540518
10.
go back to reference Heimann T, Meinzer HP (2009) Statistical shape models for 3d medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefPubMed Heimann T, Meinzer HP (2009) Statistical shape models for 3d medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefPubMed
11.
go back to reference Hou B, Alansary A, McDonagh S, Davidson A, Rutherford M, Hajnal JV, Rueckert D, Glocker B, Kainz B (2017) Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: MICCAI. Springer, New York, pp 296–304 Hou B, Alansary A, McDonagh S, Davidson A, Rutherford M, Hajnal JV, Rueckert D, Glocker B, Kainz B (2017) Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: MICCAI. Springer, New York, pp 296–304
12.
go back to reference Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21(5):450–461CrossRefPubMed Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21(5):450–461CrossRefPubMed
13.
go back to reference Khurana B, Sheehan SE, Sodickson AD, Weaver MJ (2014) Pelvic ring fractures: what the orthopedic surgeon wants to know. Radiographics 34(5):1317–1333CrossRefPubMed Khurana B, Sheehan SE, Sodickson AD, Weaver MJ (2014) Pelvic ring fractures: what the orthopedic surgeon wants to know. Radiographics 34(5):1317–1333CrossRefPubMed
14.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
15.
go back to reference Liu D, Zhou KS, Bernhardt D, Comaniciu D (2010) Search strategies for multiple landmark detection by submodular maximization. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2831–2838 Liu D, Zhou KS, Bernhardt D, Comaniciu D (2010) Search strategies for multiple landmark detection by submodular maximization. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2831–2838
16.
go back to reference Mader AO, von Berg J, Fabritz A, Lorenz C, Meyer C (2018) Localization and labeling of posterior ribs in chest radiographs using a CRF-regularized FCN with local refinement. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 562–570CrossRef Mader AO, von Berg J, Fabritz A, Lorenz C, Meyer C (2018) Localization and labeling of posterior ribs in chest radiographs using a CRF-regularized FCN with local refinement. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 562–570CrossRef
17.
go back to reference Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3d/2d registration methods for image-guided interventions. Med Image Anal 16(3):642–661CrossRefPubMed Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3d/2d registration methods for image-guided interventions. Med Image Anal 16(3):642–661CrossRefPubMed
18.
go back to reference Payer C, Štern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using CNNS. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 230–238CrossRef Payer C, Štern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using CNNS. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 230–238CrossRef
19.
go back to reference Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM (2012) Development of a semi-automated method for mitral valve modeling with medial axis representation using 3d ultrasound. Med Phys 39(2):933–950CrossRefPubMed Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM (2012) Development of a semi-automated method for mitral valve modeling with medial axis representation using 3d ultrasound. Med Phys 39(2):933–950CrossRefPubMed
21.
go back to reference Sa R, Owens W, Wiegand R, Studin M, Capoferri D, Barooha K, Greaux A, Rattray R, Hutton A, Cintineo J, Chaudhary V (2017) Intervertebral disc detection in x-ray images using faster r-cnn. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp 564–567 Sa R, Owens W, Wiegand R, Studin M, Capoferri D, Barooha K, Greaux A, Rattray R, Hutton A, Cintineo J, Chaudhary V (2017) Intervertebral disc detection in x-ray images using faster r-cnn. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp 564–567
22.
go back to reference Starr R, Jones A, Reinert C, Borer D (2001) Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury 32:SA45–SA50CrossRefPubMed Starr R, Jones A, Reinert C, Borer D (2001) Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury 32:SA45–SA50CrossRefPubMed
23.
go back to reference Štern D, Ebner T, Urschler M (2016) From local to global random regression forests: exploring anatomical landmark localization. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 221–229CrossRef Štern D, Ebner T, Urschler M (2016) From local to global random regression forests: exploring anatomical landmark localization. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 221–229CrossRef
24.
go back to reference Stöckle U, Schaser K, König B (2007) Image guidance in pelvic and acetabular surgery-expectations, success and limitations. Injury 38(4):450–462CrossRefPubMed Stöckle U, Schaser K, König B (2007) Image guidance in pelvic and acetabular surgery-expectations, success and limitations. Injury 38(4):450–462CrossRefPubMed
25.
go back to reference Tucker E, Fotouhi J, Unberath M, Lee SC, Fuerst B, Johnson A, Armand M,Osgood GM, Navab N (2018) Towards clinical translation of augmented orthopedic surgery: from pre-op CT to intra-op x-ray via RGBD sensing. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, vol 10579. International Society for Optics and Photonics, p 105790J Tucker E, Fotouhi J, Unberath M, Lee SC, Fuerst B, Johnson A, Armand M,Osgood GM, Navab N (2018) Towards clinical translation of augmented orthopedic surgery: from pre-op CT to intra-op x-ray via RGBD sensing. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, vol 10579. International Society for Optics and Photonics, p 105790J
26.
go back to reference Unberath M, Zaech JN, Lee SC, Bier B, Fotouhi J, Armand M, Navab N (2018) Deepdrr–a catalyst for machine learning in fluoroscopy-guided procedures. In: International conference on medical image computing and computer-assisted intervention. Springer, New YorkCrossRef Unberath M, Zaech JN, Lee SC, Bier B, Fotouhi J, Armand M, Navab N (2018) Deepdrr–a catalyst for machine learning in fluoroscopy-guided procedures. In: International conference on medical image computing and computer-assisted intervention. Springer, New YorkCrossRef
27.
go back to reference Urschler M, Ebner T, Štern D (2018) Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med Image Anal 43:23–36CrossRefPubMed Urschler M, Ebner T, Štern D (2018) Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med Image Anal 43:23–36CrossRefPubMed
28.
go back to reference Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Vandaele R, Marée R, Jodogne S, Geurts P, Chen C, Zhen G, Chu C, Mirzaalian H, Vrtovec T, Ibragimov B (2015) Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans Med Imaging 34(9):1890–1900CrossRefPubMed Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Vandaele R, Marée R, Jodogne S, Geurts P, Chen C, Zhen G, Chu C, Mirzaalian H, Vrtovec T, Ibragimov B (2015) Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans Med Imaging 34(9):1890–1900CrossRefPubMed
29.
go back to reference Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: CVPR, pp 4724–4732 Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: CVPR, pp 4724–4732
30.
go back to reference Xie W, Franke J, Chen C, Grützner PA, Schumann S, Nolte LP, Zheng G (2015) A complete-pelvis segmentation framework for image-free total hip arthroplasty (tha): methodology and clinical study. Int J Med Robot Comput Assist Surg 11(2):166–180CrossRef Xie W, Franke J, Chen C, Grützner PA, Schumann S, Nolte LP, Zheng G (2015) A complete-pelvis segmentation framework for image-free total hip arthroplasty (tha): methodology and clinical study. Int J Med Robot Comput Assist Surg 11(2):166–180CrossRef
31.
go back to reference Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681CrossRefPubMed Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681CrossRefPubMed
Metadata
Title
Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views
Authors
Bastian Bier
Florian Goldmann
Jan-Nico Zaech
Javad Fotouhi
Rachel Hegeman
Robert Grupp
Mehran Armand
Greg Osgood
Nassir Navab
Andreas Maier
Mathias Unberath
Publication date
01-09-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 9/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01975-5

Other articles of this Issue 9/2019

International Journal of Computer Assisted Radiology and Surgery 9/2019 Go to the issue