Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 11/2018

01-11-2018 | Original Article

Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging

Authors: Minh Nguyen Nhat To, Dang Quoc Vu, Baris Turkbey, Peter L. Choyke, Jin Tae Kwak

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 11/2018

Login to get access

Abstract

Purpose

We propose an approach of 3D convolutional neural network to segment the prostate in MR images.

Methods

A 3D deep dense multi-path convolutional neural network that follows the framework of the encoder–decoder design is proposed. The encoder is built based upon densely connected layers that learn the high-level feature representation of the prostate. The decoder interprets the features and predicts the whole prostate volume by utilizing a residual layout and grouped convolution. A set of sub-volumes of MR images, centered at the prostate, is generated and fed into the proposed network for training purpose. The performance of the proposed network is compared to previously reported approaches.

Results

Two independent datasets were employed to assess the proposed network. In quantitative evaluations, the proposed network achieved 95.11 and 89.01 Dice coefficients for the two datasets. The segmentation results were robust to variations in MR images. In comparison experiments, the segmentation performance of the proposed network was comparable to the previously reported approaches. In qualitative evaluations, the segmentation results by the proposed network were well matched to the ground truth provided by human experts.

Conclusions

The proposed network is capable of segmenting the prostate in an accurate and robust manner. This approach can be applied to other types of medical images.
Literature
1.
go back to reference de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202(2):343–351CrossRef de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202(2):343–351CrossRef
2.
go back to reference Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, Taneja SS, Thoeny H, Villeirs G, Villers A (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? a systematic review of the literature. Eur Urol 68(6):1045–1053CrossRefPubMed Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, Taneja SS, Thoeny H, Villeirs G, Villers A (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? a systematic review of the literature. Eur Urol 68(6):1045–1053CrossRefPubMed
3.
go back to reference Garvey B, Türkbey B, Truong H, Bernardo M, Periaswamy S, Choyke PL (2014) Clinical value of prostate segmentation and volume determination on MRI in benign prostatic hyperplasia. Diagn Interv Radiol 20(3):229CrossRefPubMedPubMedCentral Garvey B, Türkbey B, Truong H, Bernardo M, Periaswamy S, Choyke PL (2014) Clinical value of prostate segmentation and volume determination on MRI in benign prostatic hyperplasia. Diagn Interv Radiol 20(3):229CrossRefPubMedPubMedCentral
4.
go back to reference Valerio M, Donaldson I, Emberton M, Ehdaie B, Hadaschik BA, Marks LS, Mozer P, Rastinehad AR, Ahmed HU (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging—ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68(1):8–19CrossRefPubMed Valerio M, Donaldson I, Emberton M, Ehdaie B, Hadaschik BA, Marks LS, Mozer P, Rastinehad AR, Ahmed HU (2015) Detection of clinically significant prostate cancer using magnetic resonance imaging—ultrasound fusion targeted biopsy: a systematic review. Eur Urol 68(1):8–19CrossRefPubMed
5.
go back to reference Muller BG, Fütterer JJ, Gupta RT, Katz A, Kirkham A, Kurhanewicz J, Moul JW, Pinto PA, Rastinehad AR, Robertson C (2014) The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 113(2):218–227CrossRefPubMed Muller BG, Fütterer JJ, Gupta RT, Katz A, Kirkham A, Kurhanewicz J, Moul JW, Pinto PA, Rastinehad AR, Robertson C (2014) The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 113(2):218–227CrossRefPubMed
6.
go back to reference Ghai S, Louis AS, Van Vliet M, Lindner U, Haider MA, Hlasny E, Spensieri P, Van Der Kwast TH, McCluskey SA, Kucharczyk W (2015) Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. Am J Roentgenol 205(2):W177–W184CrossRef Ghai S, Louis AS, Van Vliet M, Lindner U, Haider MA, Hlasny E, Spensieri P, Van Der Kwast TH, McCluskey SA, Kucharczyk W (2015) Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. Am J Roentgenol 205(2):W177–W184CrossRef
7.
go back to reference Zhu Y, Williams S, Zwiggelaar R (2004) Segmentation of volumetric prostate MRI data using hybrid 2D + 3D shape modeling. In: Proceeding of medical image understanding and analysis, pp 61–64 Zhu Y, Williams S, Zwiggelaar R (2004) Segmentation of volumetric prostate MRI data using hybrid 2D + 3D shape modeling. In: Proceeding of medical image understanding and analysis, pp 61–64
8.
go back to reference Allen PD, Graham J, Williamson DC, Hutchinson CE (2006) Differential segmentation of the prostate in MR images using combined 3D shape modelling and voxel classification. In: 3rd IEEE international symposium on biomedical imaging: nano to macro. IEEE, pp 410–413 Allen PD, Graham J, Williamson DC, Hutchinson CE (2006) Differential segmentation of the prostate in MR images using combined 3D shape modelling and voxel classification. In: 3rd IEEE international symposium on biomedical imaging: nano to macro. IEEE, pp 410–413
11.
go back to reference Vikal S, Haker S, Tempany C, Fichtinger G (2009) Prostate contouring in MRI guided biopsy. In: Medical imaging 2009: image processing. International society for optics and photonics, p 72594A Vikal S, Haker S, Tempany C, Fichtinger G (2009) Prostate contouring in MRI guided biopsy. In: Medical imaging 2009: image processing. International society for optics and photonics, p 72594A
12.
go back to reference Toth R, Madabhushi A (2012) Multifeature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Trans Med Imaging 31(8):1638–1650CrossRefPubMed Toth R, Madabhushi A (2012) Multifeature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Trans Med Imaging 31(8):1638–1650CrossRefPubMed
13.
go back to reference Zwiggelaar R, Zhu Y, Williams S (2003) Semi-automatic segmentation of the prostate. In: Perales FJ, Campilho AJC, de la Blanca NP, Sanfeliu A (eds) Pattern recognition and image analysis. Springer, Berlin, pp 1108–1116CrossRef Zwiggelaar R, Zhu Y, Williams S (2003) Semi-automatic segmentation of the prostate. In: Perales FJ, Campilho AJC, de la Blanca NP, Sanfeliu A (eds) Pattern recognition and image analysis. Springer, Berlin, pp 1108–1116CrossRef
14.
go back to reference El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, Bradley JD, Grigsby P, Deasy JO (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 34(12):4738–4749CrossRefPubMed El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, Bradley JD, Grigsby P, Deasy JO (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 34(12):4738–4749CrossRefPubMed
15.
go back to reference Klein S, van der Heide UA, Raaymakers BW, Kotte AN, Staring M, Pluim JP (2007) Segmentation of the prostate in MR images by atlas matching. In: 4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007. IEEE, pp 1300–1303 Klein S, van der Heide UA, Raaymakers BW, Kotte AN, Staring M, Pluim JP (2007) Segmentation of the prostate in MR images by atlas matching. In: 4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007. IEEE, pp 1300–1303
16.
go back to reference Flores-Tapia D, Thomas G, Venugopal N, McCurdy B, Pistorius S (2008) Semi automatic MRI prostate segmentation based on wavelet multiscale products. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE. IEEE, pp 3020–3023 Flores-Tapia D, Thomas G, Venugopal N, McCurdy B, Pistorius S (2008) Semi automatic MRI prostate segmentation based on wavelet multiscale products. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE. IEEE, pp 3020–3023
17.
go back to reference Fotin SV, Yin Y, Periaswamy S, Kunz J, Haldankar H, Muradyan N, Cornud F, Turkbey B, Choyke PL (2012) Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images. In: Proceedings of the SPIE, vol 8314. https://doi.org/10.1117/12.911620 Fotin SV, Yin Y, Periaswamy S, Kunz J, Haldankar H, Muradyan N, Cornud F, Turkbey B, Choyke PL (2012) Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images. In: Proceedings of the SPIE, vol 8314. https://​doi.​org/​10.​1117/​12.​911620
18.
go back to reference Yin Y, Fotin SV, Periaswamy S, Kunz J, Haldankar H, Muradyan N, Cornud F, Turkbey B, Choyke P (2012) Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement. In: Medical imaging 2012: image processing. International Society for Optics and Photonics, p 831406 Yin Y, Fotin SV, Periaswamy S, Kunz J, Haldankar H, Muradyan N, Cornud F, Turkbey B, Choyke P (2012) Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement. In: Medical imaging 2012: image processing. International Society for Optics and Photonics, p 831406
19.
go back to reference Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral
20.
go back to reference Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 556–564 Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 556–564
21.
go back to reference Chen H, Qi X, Yu L, Heng P-A (2016) Dcan: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2487–2496 Chen H, Qi X, Yu L, Heng P-A (2016) Dcan: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2487–2496
22.
go back to reference Xing F, Xie Y, Yang L (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 35(2):550–566CrossRefPubMed Xing F, Xie Y, Yang L (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 35(2):550–566CrossRefPubMed
23.
go back to reference Cheng R, Roth HR, Lu L, Wang S, Turkbey B, Gandler W, McCreedy ES, Agarwal HK, Choyke P, Summers RM (2016) Active appearance model and deep learning for more accurate prostate segmentation on MRI. In: Medical imaging 2016: image processing. International Society for Optics and Photonics, p 97842I Cheng R, Roth HR, Lu L, Wang S, Turkbey B, Gandler W, McCreedy ES, Agarwal HK, Choyke P, Summers RM (2016) Active appearance model and deep learning for more accurate prostate segmentation on MRI. In: Medical imaging 2016: image processing. International Society for Optics and Photonics, p 97842I
24.
go back to reference Zhu Q, Du B, Turkbey B, Choyke PL, Yan P (2017) Deeply-supervised CNN for prostate segmentation. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 178–184 Zhu Q, Du B, Turkbey B, Choyke PL, Yan P (2017) Deeply-supervised CNN for prostate segmentation. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 178–184
25.
go back to reference Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, pp 66–72 Yu L, Yang X, Chen H, Qin J, Heng P-A (2017) Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, pp 66–72
26.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
27.
go back to reference Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520–1528 Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520–1528
28.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
29.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
30.
go back to reference Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, p 3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, p 3
31.
go back to reference Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373. https://doi.org/10.1016/j.media.2013.12.002 CrossRefPubMed Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373. https://​doi.​org/​10.​1016/​j.​media.​2013.​12.​002 CrossRefPubMed
32.
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5987–5995
33.
go back to reference Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR) Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations (ICLR)
34.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th international conference on 3D vision (3DV). IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th international conference on 3D vision (3DV). IEEE, pp 565–571
35.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention—MICCAI 2016. Springer International Publishing, Cham, pp 424–432CrossRef Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention—MICCAI 2016. Springer International Publishing, Cham, pp 424–432CrossRef
36.
go back to reference Tsehay YK, Lay NS, Roth HR, Wang X, Kwak JT, Turkbey BI, Pinto PA, Wood BJ, Summers RM (2017) Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images. In: SPIE medical imaging. SPIE, p 11 Tsehay YK, Lay NS, Roth HR, Wang X, Kwak JT, Turkbey BI, Pinto PA, Wood BJ, Summers RM (2017) Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images. In: SPIE medical imaging. SPIE, p 11
37.
Metadata
Title
Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging
Authors
Minh Nguyen Nhat To
Dang Quoc Vu
Baris Turkbey
Peter L. Choyke
Jin Tae Kwak
Publication date
01-11-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 11/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1841-4

Other articles of this Issue 11/2018

International Journal of Computer Assisted Radiology and Surgery 11/2018 Go to the issue