Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 6/2018

01-06-2018 | Original Article

Biomechanics-based graph matching for augmented CT-CBCT

Authors: Jaime Garcia Guevara, Igor Peterlik, Marie-Odile Berger, Stéphane Cotin

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 6/2018

Login to get access

Abstract

Purpose

Augmenting intraoperative cone beam computed tomography (CBCT) images with preoperative computed tomography data in the context of image-guided liver therapy is proposed. The expected benefit is an improved visualization of tumor(s), vascular system and other internal structures of interest.

Method

An automatic elastic registration based on matching of vascular trees extracted from both the preoperative and intraoperative images is presented. Although methods dedicated to nonrigid graph matching exist, they are not efficient when large intraoperative deformations of tissues occur, as is the case during the liver surgery. The contribution is an extension of the graph matching algorithm using Gaussian process regression (GPR) (Serradell et al. in IEEE Trans Pattern Anal Mach Intell 37(3):625–638, 2015): First, an improved GPR matching is introduced by imposing additional constraints during the matching when the number of hypothesis is large; like the original algorithm, this extended version does not require a manual initialization of matching. Second, a fast biomechanical model is employed to make the method capable of handling large deformations.

Results

The proposed automatic intraoperative augmentation is evaluated on both synthetic and real data. It is demonstrated that the algorithm is capable of handling large deformations, thus being more robust and reliable than previous approaches. Moreover, the time required to perform the elastic registration is compatible with the intraoperative navigation scenario.

Conclusion

A biomechanics-based graph matching method, which can handle large deformations and augment intraoperative CBCT, is presented and evaluated.
Literature
1.
go back to reference Serradell E, Pinheiro MA, Sznitman R, Kybic J, Moreno-Noguer F, Fua P (2015) Non-rigid graph registration using active testing search. IEEE Trans Pattern Anal Mach Intell. 37(3):625–638CrossRefPubMed Serradell E, Pinheiro MA, Sznitman R, Kybic J, Moreno-Noguer F, Fua P (2015) Non-rigid graph registration using active testing search. IEEE Trans Pattern Anal Mach Intell. 37(3):625–638CrossRefPubMed
2.
go back to reference Tacher V, Radaelli A, Lin M, Geschwind JF (2015) How i do it: Cone-beam ct during transarterial chemoembolization for liver cancer. Radiology 274(2):320–334CrossRefPubMedPubMedCentral Tacher V, Radaelli A, Lin M, Geschwind JF (2015) How i do it: Cone-beam ct during transarterial chemoembolization for liver cancer. Radiology 274(2):320–334CrossRefPubMedPubMedCentral
3.
go back to reference European Association For The Study Of The Liver (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943CrossRef European Association For The Study Of The Liver (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943CrossRef
4.
go back to reference Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imag 32(7):1153–1190CrossRef Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imag 32(7):1153–1190CrossRef
5.
go back to reference Lange T, Papenberg N, Heldmann S, Modersitzki J, Fischer B, Lamecker H, Schlag PM (2009) 3D ultrasound-CT registration of the liver using combined landmark-intensity information. Int J Comput Assist Radiol Surg. 4(1):79–88CrossRefPubMed Lange T, Papenberg N, Heldmann S, Modersitzki J, Fischer B, Lamecker H, Schlag PM (2009) 3D ultrasound-CT registration of the liver using combined landmark-intensity information. Int J Comput Assist Radiol Surg. 4(1):79–88CrossRefPubMed
6.
go back to reference Dagon B, Baur C, Bettschart V (2008) Real-time update of 3D deformable models for computer aided liver surgery. In: 19th international conference on pattern recognition, pp 2–5 Dagon B, Baur C, Bettschart V (2008) Real-time update of 3D deformable models for computer aided liver surgery. In: 19th international conference on pattern recognition, pp 2–5
7.
go back to reference Oktay O, Zhang L, Mansi T, Mountney P, Mewes P, Nicolau S, Soler L, Chefd’hotel C (2013) Biomechanically driven registration of pre- to intra-operative 3d images for laparoscopic surgery. In: International conference MICCAI. Springer, Berlin, pp 1–9 Oktay O, Zhang L, Mansi T, Mountney P, Mewes P, Nicolau S, Soler L, Chefd’hotel C (2013) Biomechanically driven registration of pre- to intra-operative 3d images for laparoscopic surgery. In: International conference MICCAI. Springer, Berlin, pp 1–9
8.
go back to reference Pinheiro MA, Kybic J, Fua P (2017) Geometric graph matching using monte carlo tree search. IEEE Trans Pattern Anal Mach Intell 39(11):2171–2185CrossRefPubMed Pinheiro MA, Kybic J, Fua P (2017) Geometric graph matching using monte carlo tree search. IEEE Trans Pattern Anal Mach Intell 39(11):2171–2185CrossRefPubMed
9.
go back to reference Smistad E, Elster AC, Lindseth F (2014) GPU accelerated segmentation and centerline extraction of tubular structures from medical images. Int J Comput Assist Radiol Surg 9(4):561–575CrossRefPubMed Smistad E, Elster AC, Lindseth F (2014) GPU accelerated segmentation and centerline extraction of tubular structures from medical images. Int J Comput Assist Radiol Surg 9(4):561–575CrossRefPubMed
10.
go back to reference Plantefève R, Kadoury S, Tang A, Peterlik I (2017) Robust automatic graph-based skeletonization of hepatic vascular trees, vol 10552. LNCS, Springer, Berlin, pp 20–28 Plantefève R, Kadoury S, Tang A, Peterlik I (2017) Robust automatic graph-based skeletonization of hepatic vascular trees, vol 10552. LNCS, Springer, Berlin, pp 20–28
11.
go back to reference Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge
12.
go back to reference van Pelt J, Verwer RWH, Uylings HBM (1989) Centrifugal-order distributions in binary topological trees. Bull Math Biol 51(4):511–536CrossRef van Pelt J, Verwer RWH, Uylings HBM (1989) Centrifugal-order distributions in binary topological trees. Bull Math Biol 51(4):511–536CrossRef
13.
go back to reference Devroye L, Kruszewski P (1995) A note on the Horton–Strahler number for random trees. Inf Process Lett 2(56):95–99CrossRef Devroye L, Kruszewski P (1995) A note on the Horton–Strahler number for random trees. Inf Process Lett 2(56):95–99CrossRef
14.
go back to reference Peterlík I, Duriez C, Cotin S (2012) Modeling and real-time simulation of a vascularized liver tissue. In: International conference MICCAI. Springer, Berlin, pp 50–57 Peterlík I, Duriez C, Cotin S (2012) Modeling and real-time simulation of a vascularized liver tissue. In: International conference MICCAI. Springer, Berlin, pp 50–57
15.
go back to reference Plantefève R, Peterlik I, Haouchine N, Cotin S (2016) Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann Biomed Eng 44(1):139–153CrossRefPubMed Plantefève R, Peterlik I, Haouchine N, Cotin S (2016) Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann Biomed Eng 44(1):139–153CrossRefPubMed
16.
go back to reference Marchesseau S, Chatelin S, Delingette H (2017) Non linear biomechanical model of the Liver. In: Payan Y, Ohayon J (eds) Biomechanics of living organs. Elsevier, Amsterdam, p 602 Marchesseau S, Chatelin S, Delingette H (2017) Non linear biomechanical model of the Liver. In: Payan Y, Ohayon J (eds) Biomechanics of living organs. Elsevier, Amsterdam, p 602
17.
go back to reference Wittek A, Hawkins T, Miller K (2009) On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech model mechanobiol 8(1):77–84CrossRefPubMed Wittek A, Hawkins T, Miller K (2009) On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech model mechanobiol 8(1):77–84CrossRefPubMed
18.
go back to reference Boltcheva D, Yvinec M, Boissonnat JD (2009) Mesh generation from 3D multi-material images. In: International Conference MICCAI. Springer, Berlin, pp 283–290 Boltcheva D, Yvinec M, Boissonnat JD (2009) Mesh generation from 3D multi-material images. In: International Conference MICCAI. Springer, Berlin, pp 283–290
Metadata
Title
Biomechanics-based graph matching for augmented CT-CBCT
Authors
Jaime Garcia Guevara
Igor Peterlik
Marie-Odile Berger
Stéphane Cotin
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 6/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1755-1

Other articles of this Issue 6/2018

International Journal of Computer Assisted Radiology and Surgery 6/2018 Go to the issue