Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 7/2016

01-07-2016 | Original Article

Shape-based acetabular cartilage segmentation: application to CT and MRI datasets

Authors: Pooneh R. Tabrizi, Reza A. Zoroofi, Futoshi Yokota, Takashi Nishii, Yoshinobu Sato

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 7/2016

Login to get access

Abstract

Purpose

A new method for acetabular cartilage segmentation in both computed tomography (CT) arthrography and magnetic resonance imaging (MRI) datasets with leg tension is developed and tested.

Methods

The new segmentation method is based on the combination of shape and intensity information. Shape information is acquired according to the predictable nonlinear relationship between the U-shaped acetabulum region and acetabular cartilage. Intensity information is obtained from the acetabular cartilage region automatically to complete the segmentation procedures. This method is evaluated using 54 CT arthrography datasets with two different radiation doses and 20 MRI datasets. Additionally, the performance of this method in identifying acetabular cartilage is compared with four other acetabular cartilage segmentation methods.

Results

This method performed better than the comparison methods. Indeed, this method maintained good accuracy level for 74 datasets independent of the cartilage modality and with minimum user interaction in the bone segmentation procedures. In addition, this method was efficient in noisy conditions and in detection of the damaged cartilages with zero thickness, which confirmed its potential clinical usefulness.

Conclusions

Our new method proposes acetabular cartilage segmentation in three different datasets based on the combination of the shape and intensity information. This method executes well in situations where there are clear boundaries between the acetabular and femoral cartilages. However, the acetabular cartilage and pelvic bone information should be obtained from one dataset such as CT arthrography or MRI datasets with leg traction.
Appendix
Available only for authorised users
Literature
2.
go back to reference Nishii T, Sugano N, Sato Y, Tanaka H, Miki H, Yoshikawa H (2004) Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of mr imaging. Osteoarthr Cartil 12(8):650–657CrossRefPubMed Nishii T, Sugano N, Sato Y, Tanaka H, Miki H, Yoshikawa H (2004) Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of mr imaging. Osteoarthr Cartil 12(8):650–657CrossRefPubMed
3.
go back to reference Tamura S, Nishii T, Shiomi T, Yamazaki Y, Murase K, Yoshikawa H, Sugano N (2012) Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study. Osteoarthr Cartil 20(7):646–652CrossRefPubMed Tamura S, Nishii T, Shiomi T, Yamazaki Y, Murase K, Yoshikawa H, Sugano N (2012) Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study. Osteoarthr Cartil 20(7):646–652CrossRefPubMed
4.
go back to reference Williams TG, Holmes AP, Waterton JC, Maciewicz RA, Hutchinson CE, Moots RJ, Nash AFP, Taylor CJ (2010) Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans Med Imaging 29(8):1541–1559CrossRefPubMed Williams TG, Holmes AP, Waterton JC, Maciewicz RA, Hutchinson CE, Moots RJ, Nash AFP, Taylor CJ (2010) Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans Med Imaging 29(8):1541–1559CrossRefPubMed
5.
go back to reference Cheng Y, Wang S, Yamazaki T, Zhaob J, Nakajima Y, Tamura S (2007) Hip cartilage thickness measurement accuracy improvement. Comput Med Imaging Graph 31(8):643–655CrossRefPubMed Cheng Y, Wang S, Yamazaki T, Zhaob J, Nakajima Y, Tamura S (2007) Hip cartilage thickness measurement accuracy improvement. Comput Med Imaging Graph 31(8):643–655CrossRefPubMed
6.
go back to reference Siversson C, Akhondi-Asl A, Bixby S, Kim YJ, Warfield SK (2014) Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation. Osteoarthr Cartil 22(10):1511–1515CrossRefPubMedPubMedCentral Siversson C, Akhondi-Asl A, Bixby S, Kim YJ, Warfield SK (2014) Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation. Osteoarthr Cartil 22(10):1511–1515CrossRefPubMedPubMedCentral
7.
go back to reference Tabrizi PR, Zoroofi RA, Yokota F, Tamura S, Nishii T, Sato Y (2015) Acetabular cartilage segmentation based on bone-normalized probabilistic atlas from contrast-enhanced CT images. Int J Comput Assist Radiol Surg 10(4):433–446CrossRefPubMed Tabrizi PR, Zoroofi RA, Yokota F, Tamura S, Nishii T, Sato Y (2015) Acetabular cartilage segmentation based on bone-normalized probabilistic atlas from contrast-enhanced CT images. Int J Comput Assist Radiol Surg 10(4):433–446CrossRefPubMed
8.
go back to reference Cheong J, Suter D, Cicuttini F (2005) Development of semi-automatic segmentation methods for measuring tibial cartilage volume. In: Proceedings of DICTA, pp 307–314 Cheong J, Suter D, Cicuttini F (2005) Development of semi-automatic segmentation methods for measuring tibial cartilage volume. In: Proceedings of DICTA, pp 307–314
9.
go back to reference Fripp J, Crozier S, Warfield SK, Ourselin S (2010) Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 29(1):55–64CrossRefPubMed Fripp J, Crozier S, Warfield SK, Ourselin S (2010) Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 29(1):55–64CrossRefPubMed
10.
go back to reference Glocker B, Komodakis N, Paragios N, Glaser C, Tziritas G, Navab N (2007) Primal/dual linear programming and statistical atlases for cartilage segmentation. Proc MICCAI 10:536–543 Glocker B, Komodakis N, Paragios N, Glaser C, Tziritas G, Navab N (2007) Primal/dual linear programming and statistical atlases for cartilage segmentation. Proc MICCAI 10:536–543
11.
go back to reference Folkesson J, Dam E, Olsen O, Pettersen P, Christiansen C (2007) Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 26(1):106–115CrossRefPubMed Folkesson J, Dam E, Olsen O, Pettersen P, Christiansen C (2007) Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 26(1):106–115CrossRefPubMed
12.
go back to reference Lee S, Park S, Shim H, Yun I, Lee S (2011) Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Comput Vis Image Underst 115(12):1710–1720CrossRef Lee S, Park S, Shim H, Yun I, Lee S (2011) Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Comput Vis Image Underst 115(12):1710–1720CrossRef
13.
go back to reference Zhang K, Lu W, Marziliano P (2013) Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn Reson Imaging 31(10):1731–1743CrossRefPubMed Zhang K, Lu W, Marziliano P (2013) Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn Reson Imaging 31(10):1731–1743CrossRefPubMed
14.
go back to reference Baniasadipour A, Zoroofi RA, Sato Y, Nishii T, Tanaka H (2011) Automated knowledge-based segmentation and analysis of the hip bones and cartilages using multi-slice CT data. Imaging Sci 59(5):253–266CrossRef Baniasadipour A, Zoroofi RA, Sato Y, Nishii T, Tanaka H (2011) Automated knowledge-based segmentation and analysis of the hip bones and cartilages using multi-slice CT data. Imaging Sci 59(5):253–266CrossRef
15.
go back to reference Khanmohammadi M, Zoroofi RA, Nishii T, Tanaka H, Sato Y (2009) A hybrid technique for thickness-map visualization of the hip cartilages in MRI. IEICE Trans Inf Syst E92-D(11):2253–2263 Khanmohammadi M, Zoroofi RA, Nishii T, Tanaka H, Sato Y (2009) A hybrid technique for thickness-map visualization of the hip cartilages in MRI. IEICE Trans Inf Syst E92-D(11):2253–2263
16.
go back to reference Du X, Velut J, Bolbos R, Beuf O, Odet C, Benoit-Cattin H (2008) 3-D knee cartilage segmentation using a smoothing b-spline active surface. In: Proceedings of ICIP, pp 2924–2927 Du X, Velut J, Bolbos R, Beuf O, Odet C, Benoit-Cattin H (2008) 3-D knee cartilage segmentation using a smoothing b-spline active surface. In: Proceedings of ICIP, pp 2924–2927
17.
go back to reference Ali-Shah SA, Yahya K, Mubashar G, Bais A (2010) Quantification and visualization of MRI cartilage of the knee: a simplified approach. In: Proceedings of ICET, pp 175–180 Ali-Shah SA, Yahya K, Mubashar G, Bais A (2010) Quantification and visualization of MRI cartilage of the knee: a simplified approach. In: Proceedings of ICET, pp 175–180
18.
go back to reference Rantalainen M, Bylesjo M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2007) Kernel-based orthogonal projections to latent structures (K-OPLS). J Chemom 21(7–9):376–385CrossRef Rantalainen M, Bylesjo M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2007) Kernel-based orthogonal projections to latent structures (K-OPLS). J Chemom 21(7–9):376–385CrossRef
19.
go back to reference Bylesjo M, Rantalainen M, Nicholson JK, Holmes E, Trygg J (2008) K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinform 9(106):1–7 Bylesjo M, Rantalainen M, Nicholson JK, Holmes E, Trygg J (2008) K-OPLS package: kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space. BMC Bioinform 9(106):1–7
20.
go back to reference Fonville JM, Bylesjö M, Coen M, Nicholson JK, Holmes E, Lindon JC, Rantalainen M (2011) Non-linear modeling of 1h NMR metabonomic data using kernel-based orthogonal projections to latent structures optimized by simulated annealing. Anal Chim Acta 705(1–2):72–80CrossRefPubMed Fonville JM, Bylesjö M, Coen M, Nicholson JK, Holmes E, Lindon JC, Rantalainen M (2011) Non-linear modeling of 1h NMR metabonomic data using kernel-based orthogonal projections to latent structures optimized by simulated annealing. Anal Chim Acta 705(1–2):72–80CrossRefPubMed
21.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):299–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):299–302CrossRef
22.
go back to reference Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Proc MICCAI 12:811–818 Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Proc MICCAI 12:811–818
24.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. Trans Med Imaging 18(8):712–721CrossRef Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. Trans Med Imaging 18(8):712–721CrossRef
25.
go back to reference Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH, pp 67–76 Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH, pp 67–76
26.
go back to reference Zhang N, Zhang J, Shi R (2008) An improved Chan-Vese model for medical image segmentation. Proc Comput Sci Softw Eng 1:864–867 Zhang N, Zhang J, Shi R (2008) An improved Chan-Vese model for medical image segmentation. Proc Comput Sci Softw Eng 1:864–867
27.
go back to reference Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu DS, Rau AM, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265CrossRefPubMed Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu DS, Rau AM, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265CrossRefPubMed
Metadata
Title
Shape-based acetabular cartilage segmentation: application to CT and MRI datasets
Authors
Pooneh R. Tabrizi
Reza A. Zoroofi
Futoshi Yokota
Takashi Nishii
Yoshinobu Sato
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 7/2016
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-015-1313-z

Other articles of this Issue 7/2016

International Journal of Computer Assisted Radiology and Surgery 7/2016 Go to the issue