Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 11/2015

01-11-2015 | Original Article

Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study

Authors: Amrollah Mohammadi, Alireza Ahmadian, Amir Darbandi Azar, Ahmad Darban Sheykh, Faramarz Amiri, Javad Alirezaie

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 11/2015

Login to get access

Abstract

Purpose

Combination of various intraoperative imaging modalities potentially can reduce error of brain shift estimation during neurosurgical operations. In the present work, a new combination of surface imaging and Doppler US images is proposed to calculate the displacements of cortical surface and deformation of internal vessels in order to estimate the targeted brain shift using a Finite Element Model (FEM). Registration error in each step and the overall performance of the method are evaluated.

Methods

The preoperative steps include constructing a FEM from MR images and extracting vascular tree from MR Angiography (MRA). As the first intraoperative step, after the craniotomy and with the dura opened, a designed checkerboard pattern is projected on the cortex surface and projected landmarks are scanned and captured by a stereo camera (Int J Imaging Syst Technol 23(4):294–303, 2013. doi: 10.​1002/​ima.​22064). This 3D point cloud should be registered to boundary nodes of FEM in the region of interest. For this purpose, we developed a new non-rigid registration method, called finite element drift that is more compatible with the underlying nature of deformed object. The presented algorithm outperforms other methods such as coherent point drift when the deformation is local or non-coherent. After registration, the acquired displacement vectors are used as boundary conditions for FE model. As the second step, by tracking a 2D Doppler ultrasound probe swept on the parenchyma, a 3D image of deformed vascular tree is constructed. Elastic registration of this vascular point cloud to the corresponding preoperative data results the second series of displacement vector applicable to closest internal nodes of FEM. After running FE analysis, the displacement of all nodes is calculated. The brain shift is then estimated as displacement of nodes in boundary of a deep target, e.g., a tumor. We used intraoperative MR (iMR) images as the references for measuring the performance of the brain shift estimator. In the present study, two set of tests were performed using: (a) a deformable brain phantom with surface data and (b) an alive brain of an approximately big dog with surface data and US Doppler images. In our designed phantom, small tubes connected to an inflatable balloon were considered as displaceable targets and in the animal model, the target was modeled by a cyst which was created by an injection.

Results

In the phantom study, the registration error for the surface points before FE analysis and for the target points after running FE model were \({<}0.76\) and 1.4 mm, respectively. In a real condition of operating room for animal model, the registration error was about 1 mm for the surface, 1.9 mm for the vascular tree and 1.55 mm for the target points.

Conclusions

The proposed projected surface imaging in conjunction with the Doppler US data combined in a powerful biomechanical model can result an acceptable performance in calculation of deformation during surgical navigation. However, the projected landmark method is sensitive to ambient light and surface conditions and the Doppler ultrasound suffers from noise and 3D image construction problems, the combination of these two methods applied on a FEM has an eligible performance.
Footnotes
1
Parseh Intelligent Surgical Systems Parsiss Company, Tehran, Iran. www.​parsiss.​com.
 
Literature
1.
go back to reference Ahmadian A, Dadashi Serej N, Karimifard S, Farnia P (2013) An efficient method for estimation of soft tissue deformation based on intra-operative stereo image features and point-based registration. Int J Imaging Syst Technol 23(4):294–303. doi:10.1002/ima.22064 CrossRef Ahmadian A, Dadashi Serej N, Karimifard S, Farnia P (2013) An efficient method for estimation of soft tissue deformation based on intra-operative stereo image features and point-based registration. Int J Imaging Syst Technol 23(4):294–303. doi:10.​1002/​ima.​22064 CrossRef
2.
go back to reference Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1080CrossRefPubMed Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1080CrossRefPubMed
3.
go back to reference Nabavi A, Black P, Gering D, Westin C, Mehta V, Pergolizz R Jr, Ferrant M, Warfield S, Hata N, Schwartz R, Wells W, Kikinis R, Jolesz F (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797PubMed Nabavi A, Black P, Gering D, Westin C, Mehta V, Pergolizz R Jr, Ferrant M, Warfield S, Hata N, Schwartz R, Wells W, Kikinis R, Jolesz F (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797PubMed
4.
go back to reference Reinges M, Nguyen H, Krings T, Hutter B, Rohde V, Gilsbach J (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir 146(4):369–377CrossRefPubMed Reinges M, Nguyen H, Krings T, Hutter B, Rohde V, Gilsbach J (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir 146(4):369–377CrossRefPubMed
5.
go back to reference Trantakis C, Tittgemeyer M, Schneider J, Lindner D, Winkler D, Strauss G, Meixensberger J (2003) Investigation of time-dependency of intracranial brain shift and its relation to the extent of tumor removal using intra-operative MRI. Neurol Res 25(1):9–12CrossRefPubMed Trantakis C, Tittgemeyer M, Schneider J, Lindner D, Winkler D, Strauss G, Meixensberger J (2003) Investigation of time-dependency of intracranial brain shift and its relation to the extent of tumor removal using intra-operative MRI. Neurol Res 25(1):9–12CrossRefPubMed
6.
go back to reference Soza G, Hastreiter P, Vega F, Rezk-Salama C, Bauer M, Nimsky C, Greiner G (2003) Non-linear intraoperative correction of brain shift with 1.5 T data. Bildverarbeitung für die Medizin. Springer, Berlin. doi:10.1007/978-3-642-18993-7_5 Soza G, Hastreiter P, Vega F, Rezk-Salama C, Bauer M, Nimsky C, Greiner G (2003) Non-linear intraoperative correction of brain shift with 1.5 T data. Bildverarbeitung für die Medizin. Springer, Berlin. doi:10.​1007/​978-3-642-18993-7_​5
7.
go back to reference Clatz O, Delingette H, Talos I, Golby A, Kikinis R, Jolesz F, Ayache N, Warfield S (2005) Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans Med Imaging 24(11):1417–1427PubMedCentralCrossRefPubMed Clatz O, Delingette H, Talos I, Golby A, Kikinis R, Jolesz F, Ayache N, Warfield S (2005) Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans Med Imaging 24(11):1417–1427PubMedCentralCrossRefPubMed
8.
go back to reference Hu J, Jin X, Lee J, Zhang L, Chaudhary V, Guthikonda M, Yang K, King A (2007) Intraoperative brain shift prediction using a 3D inhomogeneous patient specific finite element model. J Neurosurg 106:164–169CrossRefPubMed Hu J, Jin X, Lee J, Zhang L, Chaudhary V, Guthikonda M, Yang K, King A (2007) Intraoperative brain shift prediction using a 3D inhomogeneous patient specific finite element model. J Neurosurg 106:164–169CrossRefPubMed
9.
go back to reference Hata N, Nabavi A, Wells W III, Warfield S, Kikinis R, Black P, Jolesz F (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr 24(4):531–538CrossRefPubMed Hata N, Nabavi A, Wells W III, Warfield S, Kikinis R, Black P, Jolesz F (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr 24(4):531–538CrossRefPubMed
10.
go back to reference Shattuck D, Leahy R (2002) Brain suite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRefPubMed Shattuck D, Leahy R (2002) Brain suite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRefPubMed
11.
go back to reference Ferrant M, Nabavi A, Macq B, Black P, Jolesz F, Kikinis R, Warfield S (2002) Serial registration of intraoperative MR images of the brain. Med Image Anal 6(4):337–359CrossRefPubMed Ferrant M, Nabavi A, Macq B, Black P, Jolesz F, Kikinis R, Warfield S (2002) Serial registration of intraoperative MR images of the brain. Med Image Anal 6(4):337–359CrossRefPubMed
12.
go back to reference Kyriacou S, Davatzikos C, Zinreich S, Bryan R (1999) Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans Med Imaging 18(7):580–592CrossRefPubMed Kyriacou S, Davatzikos C, Zinreich S, Bryan R (1999) Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans Med Imaging 18(7):580–592CrossRefPubMed
13.
go back to reference Miga M, Sinha T, Cash D, Galloway R, Weil R (2003) Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans Med Imaging 22(8):973–985CrossRefPubMed Miga M, Sinha T, Cash D, Galloway R, Weil R (2003) Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans Med Imaging 22(8):973–985CrossRefPubMed
14.
go back to reference Comeau R, Sadikot A, Fenster A, Peters T (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800CrossRefPubMed Comeau R, Sadikot A, Fenster A, Peters T (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800CrossRefPubMed
15.
go back to reference Reinertsen I, Lindseth F, Unsqaard G, Collins D (2007) Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal 11(6):673–684CrossRefPubMed Reinertsen I, Lindseth F, Unsqaard G, Collins D (2007) Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal 11(6):673–684CrossRefPubMed
16.
go back to reference Bucki M, Palombi O, Bailet M, Payan Y (2012) Doppler ultrasound driven biomedical model of the brain for intraoperative brain-shift compensation: a proof of concept in clinical conditions. In: Payan Y (ed) Soft tissue biomechanical modeling for computer assisted surgery. Studies in mechanobiology, tissue engineering and biomaterials series, vol 11. Springer, pp 135–165. doi:10.1007/978-3-642-29014-5 Bucki M, Palombi O, Bailet M, Payan Y (2012) Doppler ultrasound driven biomedical model of the brain for intraoperative brain-shift compensation: a proof of concept in clinical conditions. In: Payan Y (ed) Soft tissue biomechanical modeling for computer assisted surgery. Studies in mechanobiology, tissue engineering and biomaterials series, vol 11. Springer, pp 135–165. doi:10.​1007/​978-3-642-29014-5
17.
18.
go back to reference Joldes G, Wittek A, Couton M, Warfield S, Miller K (2009) Real-time prediction of brain shift using nonlinear finite element algorithms. In: Yang G, Hawkes D, Rueckert D, Noble A, Taylor C (eds) Medical image computing and computer-assisted intervention (MICCAI 2009). Lecture notes in computer science, vol 5762. pp 300–307. doi:10.1007/978-3-642-04271-3_37 Joldes G, Wittek A, Couton M, Warfield S, Miller K (2009) Real-time prediction of brain shift using nonlinear finite element algorithms. In: Yang G, Hawkes D, Rueckert D, Noble A, Taylor C (eds) Medical image computing and computer-assisted intervention (MICCAI 2009). Lecture notes in computer science, vol 5762. pp 300–307. doi:10.​1007/​978-3-642-04271-3_​37
19.
go back to reference Mendoza C, Laugier C (2003) Tissue Cutting using finite elements and force feedback. In: Ayache N, Delingette H (eds) Surgery simulation and soft tissue modeling. Lecture notes in computer science, vol 2673, pp 175–182. doi:10.1007/3-540-45015-7_17 Mendoza C, Laugier C (2003) Tissue Cutting using finite elements and force feedback. In: Ayache N, Delingette H (eds) Surgery simulation and soft tissue modeling. Lecture notes in computer science, vol 2673, pp 175–182. doi:10.​1007/​3-540-45015-7_​17
20.
go back to reference Dadashi Serej N, Ahmadian A, Mohagheghi S, Sadrehosseini SM (2014) A projected landmark method for reduction of registration error in image-guided surgery systems. Int J Comput Assist Radiol Surg 10(5):541–554. doi:10.1007/s11548-014-1075-z CrossRef Dadashi Serej N, Ahmadian A, Mohagheghi S, Sadrehosseini SM (2014) A projected landmark method for reduction of registration error in image-guided surgery systems. Int J Comput Assist Radiol Surg 10(5):541–554. doi:10.​1007/​s11548-014-1075-z CrossRef
21.
go back to reference Farnia P, Ahmadian A, Khoshnevisan A, Jaberzadeh A, Dadashi Serej N, Kazerooni AF (2011) An efficient point based registration of intra-operative ultrasound images with MR images for computation of brain shift; A phantom study. Proceedings of IEEE conference on engineering in medicine and biology (EMBS 2011) pp 8074–8077. doi:10.1109/IEMBS.2011.6091991 Farnia P, Ahmadian A, Khoshnevisan A, Jaberzadeh A, Dadashi Serej N, Kazerooni AF (2011) An efficient point based registration of intra-operative ultrasound images with MR images for computation of brain shift; A phantom study. Proceedings of IEEE conference on engineering in medicine and biology (EMBS 2011) pp 8074–8077. doi:10.​1109/​IEMBS.​2011.​6091991
25.
go back to reference Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 89(2/3):114–141CrossRef Chui H, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 89(2/3):114–141CrossRef
26.
go back to reference Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Machine Intell 32(12):2262–2275CrossRef Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Machine Intell 32(12):2262–2275CrossRef
27.
go back to reference Lewin JS, Nour SG, Meyers ML, Metzger AK, Maciunas RJ, Wendt M, Duerk JL, Oppelt A, Selman WR (2007) Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am J Roentgenol 189(5):1096–1103. doi:10.2214/AJR.06.1247 CrossRefPubMed Lewin JS, Nour SG, Meyers ML, Metzger AK, Maciunas RJ, Wendt M, Duerk JL, Oppelt A, Selman WR (2007) Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am J Roentgenol 189(5):1096–1103. doi:10.​2214/​AJR.​06.​1247 CrossRefPubMed
Metadata
Title
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study
Authors
Amrollah Mohammadi
Alireza Ahmadian
Amir Darbandi Azar
Ahmad Darban Sheykh
Faramarz Amiri
Javad Alirezaie
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 11/2015
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-015-1216-z

Other articles of this Issue 11/2015

International Journal of Computer Assisted Radiology and Surgery 11/2015 Go to the issue