Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2015

01-01-2015 | Original Article

A 3D active model framework for segmentation of proximal femur in MR images

Authors: Sadaf Arezoomand, Won-Sook Lee, Kawan S. Rakhra, Paul E. Beaulé

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2015

Login to get access

Abstract

Purpose

Segmentation of osseous structures from clinical MR images is difficult due to acquisition artifacts and variable signal intensity of bones. Segmentation of femoral head is required for evaluation of hip joint abnormalities such as cam- type femoroacetabular impingement. A parametric deformable model (PDM) framework was developed for segmentation of 3D magnetic resonance (MR) images of the hip.

Method

A two-phase segmentation scheme was implemented: (i) Radial basis function interpolation was performed for semi-automatic piecewise registration of a proximal femur atlas model to an MRI scan region of interest. User-defined control points on the mesh model were registered to the corresponding landmarks on the image. (ii) An active PDM was then used for coarse-to-fine level segmentation. The segmentation technique was tested using 3D synthetic image data and clinical MR scans of the hip with varying resolution.

Results

The segmentation method provided a mean target overlap of 0.95 and misclassification error of 0.035 for the synthetic data. The average target overlap was 0.88, and misclassification error rate was 0.12 for the clinical MRI data sets.

Conclusion

A framework for segmentation of proximal femur in hip MRI scans was developed and tested. This method is robust to artifacts and intensity inhomogeneity and resistant to leakage into adjacent tissues. In comparison with slicewise segmentation techniques, this method features inter-slice consistency, which results in a smooth model of the proximal femur in hip MRI scans.
Literature
1.
go back to reference Rubin D (2013) Femoroacetabular impingement: fact, fiction, or fantasy? Am J Roentgenol 201(3):526–534CrossRef Rubin D (2013) Femoroacetabular impingement: fact, fiction, or fantasy? Am J Roentgenol 201(3):526–534CrossRef
2.
go back to reference Dimmick S, Stevens K, Brazier D, Anderson S (2013) Femoroacetabular impingement. Radiol Clinics N Am 51(3):337–352CrossRef Dimmick S, Stevens K, Brazier D, Anderson S (2013) Femoroacetabular impingement. Radiol Clinics N Am 51(3):337–352CrossRef
3.
go back to reference Sankar W, Matheney T, Zaltz I (2013) Femoroacetabular impingement: current concepts and controversies. Orthop Clinics N Am 44(4):575–589CrossRef Sankar W, Matheney T, Zaltz I (2013) Femoroacetabular impingement: current concepts and controversies. Orthop Clinics N Am 44(4):575–589CrossRef
4.
go back to reference Genovese E, Spiga S, Vinci V, Aliprandi A, Di Pietto F, Coppolino F, Scialpi M, Giganti M (2013) Femoroacetabular impingement: role of imaging. Musculoskelet Surg 97:117–126CrossRef Genovese E, Spiga S, Vinci V, Aliprandi A, Di Pietto F, Coppolino F, Scialpi M, Giganti M (2013) Femoroacetabular impingement: role of imaging. Musculoskelet Surg 97:117–126CrossRef
5.
go back to reference Rakhra K (2012) ”MRI/CT in FAI”. In: Femoroacetabular impingement. Springer, Berlin, pp 41–55 Rakhra K (2012) ”MRI/CT in FAI”. In: Femoroacetabular impingement. Springer, Berlin, pp 41–55
6.
go back to reference Pham D, Xu C, Prince J (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef Pham D, Xu C, Prince J (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337PubMedCrossRef
7.
go back to reference Ababneh S, Prescott J, Gurcan M (2011) Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 15(4):438–448PubMedCentralPubMedCrossRef Ababneh S, Prescott J, Gurcan M (2011) Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med Image Anal 15(4):438–448PubMedCentralPubMedCrossRef
8.
go back to reference Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9(3):1156–1169CrossRef Hata Y, Kobashi S (2009) Fuzzy segmentation of endorrhachis in magnetic resonance images and its fuzzy maximum intensity projection. Appl Soft Comput 9(3):1156–1169CrossRef
9.
go back to reference Lorigo L, Faugeras O, Grimson W, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. Int Conf Med Image Comput Comput Assist Interv 1496:1195–1204 Lorigo L, Faugeras O, Grimson W, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. Int Conf Med Image Comput Comput Assist Interv 1496:1195–1204
10.
go back to reference Fripp J, Bourgeat P, Crozier S, Ourselin S (2007) Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Acad Radiol 14(10):1201–1208PubMedCrossRef Fripp J, Bourgeat P, Crozier S, Ourselin S (2007) Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Acad Radiol 14(10):1201–1208PubMedCrossRef
11.
go back to reference Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. Int Conf Med Image Comput Comput Assist Interv 11(1):119–126 Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. Int Conf Med Image Comput Comput Assist Interv 11(1):119–126
12.
go back to reference Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S (2010) Model-based auto-segmentation of knee bones and cartilage in MRI data. In: MICCAI workshop medical image analysis for the clinic Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S (2010) Model-based auto-segmentation of knee bones and cartilage in MRI data. In: MICCAI workshop medical image analysis for the clinic
13.
go back to reference Carballido-Gamio J, Belongie S, Majumdar S (2004) Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44PubMedCrossRef Carballido-Gamio J, Belongie S, Majumdar S (2004) Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans Med Imaging 23(1):36–44PubMedCrossRef
14.
go back to reference Frangia A, Egmont-Petersenb M, Niessena W, Reiberb J, Viergever M (2001) Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features. Image Vis Comput 19(9–10):679–690CrossRef Frangia A, Egmont-Petersenb M, Niessena W, Reiberb J, Viergever M (2001) Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features. Image Vis Comput 19(9–10):679–690CrossRef
15.
go back to reference Radeva P, Serrat J, Marti E (1995) A snake for model-based segmentation. In: International conference on computer vision Radeva P, Serrat J, Marti E (1995) A snake for model-based segmentation. In: International conference on computer vision
16.
go back to reference Pardoa J, Cabelloa D, Herasb J (1997) A snake for model-based segmentation of biomedical images. Pattern Recognit Lett 18(14):1529–1538CrossRef Pardoa J, Cabelloa D, Herasb J (1997) A snake for model-based segmentation of biomedical images. Pattern Recognit Lett 18(14):1529–1538CrossRef
17.
go back to reference Chesnaud C, Refregier P, Boulet V (1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157CrossRef Chesnaud C, Refregier P, Boulet V (1999) Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans Pattern Anal Mach Intell 21(11):1145–1157CrossRef
18.
go back to reference Ji L, Yan H (2002) Robust topology-adaptive snakes for image segmentation. Image Vis Comput 20(2):147–164CrossRef Ji L, Yan H (2002) Robust topology-adaptive snakes for image segmentation. Image Vis Comput 20(2):147–164CrossRef
19.
go back to reference Colliot O, Camara O, Bloch I (2006) Integration of fuzzy spatial relations in deformable models-application to brain MRI segmentation. Pattern Recognit 39(8):1401–1414CrossRef Colliot O, Camara O, Bloch I (2006) Integration of fuzzy spatial relations in deformable models-application to brain MRI segmentation. Pattern Recognit 39(8):1401–1414CrossRef
20.
go back to reference Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef
21.
go back to reference Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Annual conference on computer graphics and interactive techniques Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Annual conference on computer graphics and interactive techniques
22.
go back to reference Delingette H, Hebert M, Ikeuchi K (1991) ”Image segmentation and shape representation using deformable surfaces. In: IEEE computer society conference on computer vision and pattern recognition Delingette H, Hebert M, Ikeuchi K (1991) ”Image segmentation and shape representation using deformable surfaces. In: IEEE computer society conference on computer vision and pattern recognition
23.
go back to reference Cohen I, Ayache N, Cohen L (1991) Segmenting, visualizing and characterizing 3D anatomical structures with deformable surfaces. In: International conference of the IEEE engineering in medicine and biology society Cohen I, Ayache N, Cohen L (1991) Segmenting, visualizing and characterizing 3D anatomical structures with deformable surfaces. In: International conference of the IEEE engineering in medicine and biology society
24.
go back to reference Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147 Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147
25.
go back to reference McInerney T, Terzopoulos D (1995) Medical image segmentation using topologically adaptable surfaces. In: International conference on computer vision, virtual reality and robotics in medicine McInerney T, Terzopoulos D (1995) Medical image segmentation using topologically adaptable surfaces. In: International conference on computer vision, virtual reality and robotics in medicine
26.
go back to reference McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850PubMedCrossRef McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans Med Imaging 18(10):840–850PubMedCrossRef
27.
go back to reference Alfiansyah A, Ng K, Lamsudin R (2009) ”Deformable model for serial ultrasound images segmentation: application to computer assisted hip arthroplasty. In: International conference on biomedical engineering (IFMBE) Alfiansyah A, Ng K, Lamsudin R (2009) ”Deformable model for serial ultrasound images segmentation: application to computer assisted hip arthroplasty. In: International conference on biomedical engineering (IFMBE)
28.
go back to reference Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218CrossRef Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218CrossRef
29.
go back to reference Bakos M, Karch P, Dulova O (2012) Advanced initialization possibilities of active contours. In: IEEE international symposium on applied machine intelligence and informatics (SAMI) Bakos M, Karch P, Dulova O (2012) Advanced initialization possibilities of active contours. In: IEEE international symposium on applied machine intelligence and informatics (SAMI)
30.
go back to reference Rahnamayan S, Tizhoosh H, Salama M (2005) Automated snake initialization for the segmentation of the prostate in ultrasound images. Image Anal Recognit 3656:930–937 Rahnamayan S, Tizhoosh H, Salama M (2005) Automated snake initialization for the segmentation of the prostate in ultrasound images. Image Anal Recognit 3656:930–937
31.
go back to reference Dalvi R, Abugharibeh R, Wilson D, Wilson D (2006) Highly-automated 3D segmentation of femoral bone from hip MRI. In: International society for magnetic resonance in medicine scientific meeting (ISMRM), Berlin Dalvi R, Abugharibeh R, Wilson D, Wilson D (2006) Highly-automated 3D segmentation of femoral bone from hip MRI. In: International society for magnetic resonance in medicine scientific meeting (ISMRM), Berlin
32.
go back to reference Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph (TOG) 30(6):174 Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph (TOG) 30(6):174
33.
go back to reference Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2):111–146CrossRef Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2):111–146CrossRef
34.
go back to reference Tohka J (2002) Surface extraction from volumetric images using deformable meshes: a comparative study. In: European conference on computer vision (ECCV) Tohka J (2002) Surface extraction from volumetric images using deformable meshes: a comparative study. In: European conference on computer vision (ECCV)
36.
go back to reference Nötzli H, Wyss T, Stoecklin C, Schmid M, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg 84(4):556–560CrossRef Nötzli H, Wyss T, Stoecklin C, Schmid M, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg 84(4):556–560CrossRef
37.
go back to reference Torsney-Weir T, Saad A, Moller T, Hege H, Weber B, Verbavatz J, Bergner S (2011) Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Vis Comput Graph 17(12):1892–1901PubMedCrossRef Torsney-Weir T, Saad A, Moller T, Hege H, Weber B, Verbavatz J, Bergner S (2011) Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Vis Comput Graph 17(12):1892–1901PubMedCrossRef
Metadata
Title
A 3D active model framework for segmentation of proximal femur in MR images
Authors
Sadaf Arezoomand
Won-Sook Lee
Kawan S. Rakhra
Paul E. Beaulé
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2015
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-014-1125-6

Other articles of this Issue 1/2015

International Journal of Computer Assisted Radiology and Surgery 1/2015 Go to the issue