Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 4/2014

Open Access 01-07-2014 | Original Article

A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner

Authors: Ping Li, Weiwei Wang, Zhijian Song, Yong An, Chenxi Zhang

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 4/2014

Login to get access

Abstract

Background

Brain retraction causes great distortion that limits the accuracy of an image-guided neurosurgery system that uses preoperative images. Therefore, brain retraction correction is an important intraoperative clinical application.

Methods

We used a linear elastic biomechanical model, which deforms based on the eXtended Finite Element Method (XFEM) within a framework for brain retraction correction. In particular, a laser range scanner was introduced to obtain a surface point cloud of the exposed surgical field including retractors inserted into the brain. A brain retraction surface tracking algorithm converted these point clouds into boundary conditions applied to XFEM modeling that drive brain deformation. To test the framework, we performed a brain phantom experiment involving the retraction of tissue. Pairs of the modified Hausdorff distance between Canny edges extracted from model-updated images, pre-retraction, and post-retraction CT images were compared to evaluate the morphological alignment of our framework. Furthermore, the measured displacements of beads embedded in the brain phantom and the predicted ones were compared to evaluate numerical performance.

Results

The modified Hausdorff distance of 19 pairs of images decreased from 1.10 to 0.76 mm. The forecast error of 23 stainless steel beads in the phantom was between 0 and 1.73 mm (mean 1.19 mm). The correction accuracy varied between 52.8 and 100 % (mean 81.4 %).

Conclusions

The results demonstrate that the brain retraction compensation can be incorporated intraoperatively into the model-updating process in image-guided neurosurgery systems.
Literature
1.
go back to reference Ganslandt O, Behari S, Gralla J, Fahlbusch R, Nimsky C (2002) Neuronavigation: concept, techniques and applications. Neurol India 50(3):244–255PubMed Ganslandt O, Behari S, Gralla J, Fahlbusch R, Nimsky C (2002) Neuronavigation: concept, techniques and applications. Neurol India 50(3):244–255PubMed
2.
go back to reference Jolesz FA (1997) Image-guided procedures and the operating room of the future. Radiology 204(3):601–612PubMed Jolesz FA (1997) Image-guided procedures and the operating room of the future. Radiology 204(3):601–612PubMed
3.
go back to reference Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56(6):357–364PubMedCrossRef Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56(6):357–364PubMedCrossRef
5.
go back to reference Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43(4):749–758 (discussion 758–760) Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43(4):749–758 (discussion 758–760)
10.
go back to reference Platenik LA, Miga MI, Roberts DW, Kennedy FE, Hartov A, Lunn KE, Paulsen KD (2001) Comparison of an incremental versus single-step retraction model for intraoperative compensation. In: Visualization, display, and image-guided procedures, proceedings of SPIE vol 4319, pp 358–365 Platenik LA, Miga MI, Roberts DW, Kennedy FE, Hartov A, Lunn KE, Paulsen KD (2001) Comparison of an incremental versus single-step retraction model for intraoperative compensation. In: Visualization, display, and image-guided procedures, proceedings of SPIE vol 4319, pp 358–365
11.
go back to reference Pallatroni H, Hartov A, McInerney J, Platenik LA, Miga MI, Kennedy FE, Paulsen KD, Roberts DW (1999) Coregistered ultrasound as a neurosurgical guide. Stereotact Funct Neurosurg 73(1–4):143–147 Pallatroni H, Hartov A, McInerney J, Platenik LA, Miga MI, Kennedy FE, Paulsen KD, Roberts DW (1999) Coregistered ultrasound as a neurosurgical guide. Stereotact Funct Neurosurg 73(1–4):143–147
12.
go back to reference Ohue S, Kumon Y, Nagato S, Kohno S, Harada H, Nakagawa K, Kikuchi K, Miki H, Ohnishi T (2010) Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir (Tokyo) 50(4): 291–300 Ohue S, Kumon Y, Nagato S, Kohno S, Harada H, Nakagawa K, Kikuchi K, Miki H, Ohnishi T (2010) Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir (Tokyo) 50(4): 291–300
13.
go back to reference Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE, Paulsen KD (2001) Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49(1):75–84 (discussion 84–75) Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE, Paulsen KD (2001) Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49(1):75–84 (discussion 84–75)
16.
go back to reference Hamidian H, Soltanian-Zadeh H, Faraji-Dana R, Gity M (2009) Estimating brain deformation during surgery using finite element method: optimization and comparison of two linear models. J Signal Process Syst 55(1):157–167CrossRef Hamidian H, Soltanian-Zadeh H, Faraji-Dana R, Gity M (2009) Estimating brain deformation during surgery using finite element method: optimization and comparison of two linear models. J Signal Process Syst 55(1):157–167CrossRef
17.
go back to reference Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20(12):1384–1397. doi:10.1109/42.974933 PubMedCrossRef Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20(12):1384–1397. doi:10.​1109/​42.​974933 PubMedCrossRef
19.
go back to reference Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–788PubMed Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–788PubMed
20.
go back to reference Widmann G, Schullian P, Ortler M, Bale R (2012) Frameless stereotactic targeting devices: technical features, targeting errors and clinical results. Int J Med Robot 8(1):1–16. doi:10.1002/rcs.441 PubMedCrossRef Widmann G, Schullian P, Ortler M, Bale R (2012) Frameless stereotactic targeting devices: technical features, targeting errors and clinical results. Int J Med Robot 8(1):1–16. doi:10.​1002/​rcs.​441 PubMedCrossRef
22.
23.
go back to reference Lamprich BK, Miga MI (2003) Analysis of model-updated MR images to correct for brain deformation due to tissue retraction. In: Galloway RL (ed) Medical imaging 2003: visualization, image-guided procedures, and display. SPIE, San Diego, CA, pp 552–560 Lamprich BK, Miga MI (2003) Analysis of model-updated MR images to correct for brain deformation due to tissue retraction. In: Galloway RL (ed) Medical imaging 2003: visualization, image-guided procedures, and display. SPIE, San Diego, CA, pp 552–560
24.
go back to reference Platenik LA, Miga MI, Roberts DW, Kennedy FE, Hartov A, Lunn KE, Paulsen KD (2001) Comparison of an incremental versus single-step retraction model for intraoperative compensation. In: Mun SK (ed) Medical imaging 2001: visualization, display, and image-guided procedures, vol 2. Proceedings of the society of photo-optical instrumentation engineers (Spie), vol 24. pp 358–365 Platenik LA, Miga MI, Roberts DW, Kennedy FE, Hartov A, Lunn KE, Paulsen KD (2001) Comparison of an incremental versus single-step retraction model for intraoperative compensation. In: Mun SK (ed) Medical imaging 2001: visualization, display, and image-guided procedures, vol 2. Proceedings of the society of photo-optical instrumentation engineers (Spie), vol 24. pp 358–365
25.
go back to reference Platenik LA, Miga MI, Roberts DW, Lunn KE, Kennedy FE, Hartov A, Paulsen KD (2002) In vivo quantification of retraction deformation modeling for updated image-guidance during neurosurgery. IEEE Trans Biomed Eng 49(8):823–835. doi:10.1109/tbme.2002.800760 PubMedCrossRef Platenik LA, Miga MI, Roberts DW, Lunn KE, Kennedy FE, Hartov A, Paulsen KD (2002) In vivo quantification of retraction deformation modeling for updated image-guidance during neurosurgery. IEEE Trans Biomed Eng 49(8):823–835. doi:10.​1109/​tbme.​2002.​800760 PubMedCrossRef
26.
go back to reference Sun H, Kennedy FE, Carlson EJ, Hartov A, Roberts DW, Paulsen KD (2004) Modeling of brain tissue retraction using intraoperative data. In: Paper presented at the proceedings of the 7th international conference on medical image computing and computer-assisted intervention (MICCAI 2004), Saint-Malo, France Sun H, Kennedy FE, Carlson EJ, Hartov A, Roberts DW, Paulsen KD (2004) Modeling of brain tissue retraction using intraoperative data. In: Paper presented at the proceedings of the 7th international conference on medical image computing and computer-assisted intervention (MICCAI 2004), Saint-Malo, France
27.
go back to reference Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150 Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150
28.
29.
go back to reference Vigneron LM, Robe PA, Warfield SK, Verly JG (2006) XFEM-based modeling of successive resections for preoperative image updating, pp 61411C–61411C Vigneron LM, Robe PA, Warfield SK, Verly JG (2006) XFEM-based modeling of successive resections for preoperative image updating, pp 61411C–61411C
30.
go back to reference Miga MI, Sinha TK, Cash DM, Galloway RL, Weil RJ (2003) Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans Med Imaging 22(8):973–985. doi:10.1109/tmi.2003.815868 Miga MI, Sinha TK, Cash DM, Galloway RL, Weil RJ (2003) Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans Med Imaging 22(8):973–985. doi:10.​1109/​tmi.​2003.​815868
32.
34.
go back to reference Andriy M (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275 Andriy M (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275
35.
go back to reference Oc Z, Rl T (2000) The finite element method. Butterworth-Heinemann, Oxford Oc Z, Rl T (2000) The finite element method. Butterworth-Heinemann, Oxford
36.
go back to reference Han-Wen N, Stappen AFvd (2001) A surgery simulation supporting cuts and finite element deformation. In: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention. Springer, Berlin Han-Wen N, Stappen AFvd (2001) A surgery simulation supporting cuts and finite element deformation. In: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention. Springer, Berlin
37.
go back to reference Serby D, Matthias H, bor S, kely (2001) A new approach to cutting into finite element models. In: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention. Springer, Berlin Serby D, Matthias H, bor S, kely (2001) A new approach to cutting into finite element models. In: Proceedings of the 4th international conference on medical image computing and computer-assisted intervention. Springer, Berlin
38.
go back to reference Eftychios S, Tamar S, Geoffrey I, Ronald F (2007) Hybrid simulation of deformable solids. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association, San Diego, CA Eftychios S, Tamar S, Geoffrey I, Ronald F (2007) Hybrid simulation of deformable solids. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association, San Diego, CA
39.
40.
go back to reference Mor A, Kanade T (2000) Modifying soft tissue models: progressive cutting with minimal new element creation. In: Delp S, DiGoia A, Jaramaz B (eds) Medical image computing and computer-assisted intervention—MICCAI, lecture notes in computer science. Springer, Berlin, pp 598–607. doi:10.1007/978-3-540-40899-4_61 Mor A, Kanade T (2000) Modifying soft tissue models: progressive cutting with minimal new element creation. In: Delp S, DiGoia A, Jaramaz B (eds) Medical image computing and computer-assisted intervention—MICCAI, lecture notes in computer science. Springer, Berlin, pp 598–607. doi:10.​1007/​978-3-540-40899-4_​61
41.
go back to reference Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31(1):38–48CrossRef Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31(1):38–48CrossRef
42.
go back to reference Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960 Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960
43.
go back to reference Cournane S, Cannon L, Browne JE, Fagan AJ (2010) Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties. Phys Med Biol 55(19):5965–5983. doi:10.1088/0031-9155/55/19/022 Cournane S, Cannon L, Browne JE, Fagan AJ (2010) Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties. Phys Med Biol 55(19):5965–5983. doi:10.​1088/​0031-9155/​55/​19/​022
44.
go back to reference Fromageau J, Gennisson JL, Schmitt C, Maurice RL, Mongrain R, Cloutier G (2007) Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Trans Ultrason Ferroelectr Freq Control 54(3):498–509. doi:10.1109/tuffc.2007.273 PubMedCrossRef Fromageau J, Gennisson JL, Schmitt C, Maurice RL, Mongrain R, Cloutier G (2007) Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Trans Ultrason Ferroelectr Freq Control 54(3):498–509. doi:10.​1109/​tuffc.​2007.​273 PubMedCrossRef
45.
go back to reference Feifei C, Dong-Joong K, Jun-Hyub P (2013) New measurement method of Poisson’s ratio of PVA hydrogels using an optical flow analysis for a digital imaging system. Meas Sci Technol 24(5):055602 Feifei C, Dong-Joong K, Jun-Hyub P (2013) New measurement method of Poisson’s ratio of PVA hydrogels using an optical flow analysis for a digital imaging system. Meas Sci Technol 24(5):055602
47.
go back to reference Dubuisson MP, Jain AK (1994) A modified Hausdorff distance for object matching. In: Pattern recognition, 1994. vol 1—conference a: computer vision & image processing., proceedings of the 12th IAPR international conference on, vol 561, pp 566–568. doi:10.1109/icpr.1994.576361 Dubuisson MP, Jain AK (1994) A modified Hausdorff distance for object matching. In: Pattern recognition, 1994. vol 1—conference a: computer vision & image processing., proceedings of the 12th IAPR international conference on, vol 561, pp 566–568. doi:10.​1109/​icpr.​1994.​576361
Metadata
Title
A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner
Authors
Ping Li
Weiwei Wang
Zhijian Song
Yong An
Chenxi Zhang
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 4/2014
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-013-0958-8

Other articles of this Issue 4/2014

International Journal of Computer Assisted Radiology and Surgery 4/2014 Go to the issue