Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 4/2014

01-07-2014 | Original Article

Automated implant segmentation in cone-beam CT using edge detection and particle counting

Authors: Ruben Pauwels, Reinhilde Jacobs, Hilde Bosmans, Pisha Pittayapat, Pasupen Kosalagood, Onanong Silkosessak, Soontra Panmekiate

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 4/2014

Login to get access

Abstract

Purpose

To develop a fully automated, accurate and robust segmentation technique for dental implants on cone-beam CT (CBCT) images.

Methods

A head-size cylindrical polymethyl methacrylate phantom was used, containing titanium rods of 5.15 mm diameter. The phantom was scanned on 17 CBCT devices, using a total of 39 exposure protocols. Images were manually thresholded to verify the applicability of adaptive thresholding and to determine a minimum threshold value \(({T}_{\mathrm{min}})\). A three-step automatic segmentation technique was developed. Firstly, images were pre-thresholded using \({T}_{\mathrm{min}}\). Next, edge enhancement was performed by filtering the image with a Sobel operator. The filtered image was thresholded using an iteratively determined fixed threshold \(({T}_{\mathrm{edge}})\) and converted to binary. Finally, a particle counting method was used to delineate the rods. The segmented area of the titanium rods was compared to the actual area, which was corrected for phantom tilting.

Results

Manual thresholding resulted in large variation in threshold values between CBCTs. After applying the edge-enhancing filter, a stable \({T}_{\mathrm{edge}}\) value of 7.5 % was found. Particle counting successfully detected the rods for all but one device. Deviations between the segmented and real area ranged between \(-\)2.7 and +\(14.4\,\hbox {mm}^{2}\) with an average absolute error of \(2.8\,\hbox {mm}^{2}\). Considering the diameter of the segmented area, submillimeter accuracy was seen for all but two data sets.

Conclusion

A segmentation technique was defined which can be applied to CBCT data for an accurate and fully automatic delineation of titanium rods. The technique was validated in vitro and will be further tested and refined on patient data.
Literature
1.
go back to reference Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG (2012) Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J 57:46–60PubMedCrossRef Scarfe WC, Li Z, Aboelmaaty W, Scott SA, Farman AG (2012) Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Aust Dent J 57:46–60PubMedCrossRef
2.
go back to reference Naitoh M, Nabeshima H, Hayashi H, Nakayama T, Kurita K, Ariji E (2010) Postoperative assessment of incisor dental implants using cone-beam computed tomography. J Oral Implantol 36:377–384PubMedCrossRef Naitoh M, Nabeshima H, Hayashi H, Nakayama T, Kurita K, Ariji E (2010) Postoperative assessment of incisor dental implants using cone-beam computed tomography. J Oral Implantol 36:377–384PubMedCrossRef
3.
go back to reference Van Assche N, van Steenberghe D, Quirynen M, Jacobs R (2010) Accuracy assessment of computer-assisted flapless implant placement in partial edentulism. J Clin Periodontol 37:398–403PubMedCrossRef Van Assche N, van Steenberghe D, Quirynen M, Jacobs R (2010) Accuracy assessment of computer-assisted flapless implant placement in partial edentulism. J Clin Periodontol 37:398–403PubMedCrossRef
4.
go back to reference Wouters V, Mollemans W, Schutyser F (2011) Calibrated segmentation of CBCT and CT images for digitization of dental prostheses. Int J Comput Assist Radiol Surg 6:609–616PubMedCrossRef Wouters V, Mollemans W, Schutyser F (2011) Calibrated segmentation of CBCT and CT images for digitization of dental prostheses. Int J Comput Assist Radiol Surg 6:609–616PubMedCrossRef
5.
go back to reference Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K, The SEDENTEXCT Project Consortium (2013) Variability of dental cone beam CT grey values for density estimations. Br J Radiol 86:20120135 Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K, The SEDENTEXCT Project Consortium (2013) Variability of dental cone beam CT grey values for density estimations. Br J Radiol 86:20120135
6.
go back to reference Liu Y, Bäuerle T, Pan L, Dimitrakopoulou-Strauss A, Strauss LG, Heiss C, Schnettler R, Semmler W, Cao L (2012) Calibration of cone beam CT using relative attenuation ratio for quantitative assessment of bone density: a small animal study. Int J Comput Assist Radiol Surg (Epub ahead of print) Liu Y, Bäuerle T, Pan L, Dimitrakopoulou-Strauss A, Strauss LG, Heiss C, Schnettler R, Semmler W, Cao L (2012) Calibration of cone beam CT using relative attenuation ratio for quantitative assessment of bone density: a small animal study. Int J Comput Assist Radiol Surg (Epub ahead of print)
7.
go back to reference Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2013) Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res 24:94–99 Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2013) Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res 24:94–99
8.
go back to reference Schulze R, Heil U, Gro\({\upbeta }\) D, Bruellmann D, Dranischnikow E, Schwanecke U, Schoemer E (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273 Schulze R, Heil U, Gro\({\upbeta }\) D, Bruellmann D, Dranischnikow E, Schwanecke U, Schoemer E (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273
9.
go back to reference Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2011) Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 12:245–260 Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2011) Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 12:245–260
10.
go back to reference Mijiritsky E, Mazor Z, Lorean A, Levin L (2013) Implant diameter and length influence on survival: interim results during the first 2 years of function of implants by a single manufacturer. Implant Dent 22:394–398PubMedCrossRef Mijiritsky E, Mazor Z, Lorean A, Levin L (2013) Implant diameter and length influence on survival: interim results during the first 2 years of function of implants by a single manufacturer. Implant Dent 22:394–398PubMedCrossRef
11.
go back to reference Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:225–234PubMedCrossRef Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P (2006) Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:225–234PubMedCrossRef
12.
go back to reference Liu Y, Olszewski R, Alexandroni ES, Enciso R, Xu T, Mah JK (2010) The validity of in vivo tooth volume determinations from cone-beam computed tomography. Angle Orthod 80:160–166PubMedCrossRef Liu Y, Olszewski R, Alexandroni ES, Enciso R, Xu T, Mah JK (2010) The validity of in vivo tooth volume determinations from cone-beam computed tomography. Angle Orthod 80:160–166PubMedCrossRef
13.
go back to reference Shi H, Scarfe WC, Farman AG (2006) Upper airway segmentation and dimensions estimation from cone-beam CT image datasets. Int J Comput Assist Radiol Surg 1:177–186CrossRef Shi H, Scarfe WC, Farman AG (2006) Upper airway segmentation and dimensions estimation from cone-beam CT image datasets. Int J Comput Assist Radiol Surg 1:177–186CrossRef
14.
go back to reference Yazdi M, Lari MA, Bernier G, Beaulieu L (2011) An opposite view data replacement approach for reducing artifacts due to metallic dental objects. Med Phys 38:2275–2281PubMedCrossRef Yazdi M, Lari MA, Bernier G, Beaulieu L (2011) An opposite view data replacement approach for reducing artifacts due to metallic dental objects. Med Phys 38:2275–2281PubMedCrossRef
15.
go back to reference Lell MM, Meyer E, Kuefner MA, May MS, Raupach R, Uder M, Kachelriess M (2012) Normalized metal artifact reduction in head and neck computed tomography. Invest Radiol 47:415–421PubMedCrossRef Lell MM, Meyer E, Kuefner MA, May MS, Raupach R, Uder M, Kachelriess M (2012) Normalized metal artifact reduction in head and neck computed tomography. Invest Radiol 47:415–421PubMedCrossRef
16.
go back to reference Tohnak S, Mehnert AJ, Mahoney M, Crozier S (2011) Dental CT metal artefact reduction based on sequential substitution. Dentomaxillofac Radiol 40:184–190PubMedCentralPubMedCrossRef Tohnak S, Mehnert AJ, Mahoney M, Crozier S (2011) Dental CT metal artefact reduction based on sequential substitution. Dentomaxillofac Radiol 40:184–190PubMedCentralPubMedCrossRef
17.
go back to reference Pittayapat P, Galiti D, Huang Y, Dreesen K, Schreurs M, Souza PC, Rubira-Bullen IR, Westphalen FH, Pauwels R, Kalema G, Willems G, Jacobs R (2013) An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging. Clin Oral Investig 17:293–300PubMedCrossRef Pittayapat P, Galiti D, Huang Y, Dreesen K, Schreurs M, Souza PC, Rubira-Bullen IR, Westphalen FH, Pauwels R, Kalema G, Willems G, Jacobs R (2013) An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging. Clin Oral Investig 17:293–300PubMedCrossRef
18.
go back to reference Pauwels R, Beinsberger J, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K, The SEDENTEXCT Project Consortium (2012) Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol 114:127–135 Pauwels R, Beinsberger J, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K, The SEDENTEXCT Project Consortium (2012) Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg Oral Med Oral Pathol Oral Radiol 114:127–135
19.
go back to reference Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R (2009) Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 20:767–771PubMedCrossRef Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R (2009) Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 20:767–771PubMedCrossRef
20.
go back to reference Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D (2011) Morphometric analysis—cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg 39:330–334 PubMedCrossRef Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D (2011) Morphometric analysis—cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg 39:330–334 PubMedCrossRef
21.
Metadata
Title
Automated implant segmentation in cone-beam CT using edge detection and particle counting
Authors
Ruben Pauwels
Reinhilde Jacobs
Hilde Bosmans
Pisha Pittayapat
Pasupen Kosalagood
Onanong Silkosessak
Soontra Panmekiate
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 4/2014
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-013-0946-z

Other articles of this Issue 4/2014

International Journal of Computer Assisted Radiology and Surgery 4/2014 Go to the issue