Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 4/2013

01-07-2013 | Original Article

Discriminative generalized Hough transform for object localization in medical images

Authors: Heike Ruppertshofen, Cristian Lorenz, Georg Rose, Hauke Schramm

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 4/2013

Login to get access

Abstract

Purpose   This paper proposes the discriminative generalized Hough transform (DGHT) as an efficient and reliable means for object localization in medical images. It is meant to give a deeper insight into the underlying theory and a comprehensive overview of the methodology and the scope of applications. Methods   The DGHT combines the generalized Hough transform (GHT) with a discriminative training technique for the GHT models to obtain more efficient and robust localization results. To this end, the model points are equipped with individual weights, which are trained discriminatively with respect to a minimal localization error. Through this weighting, the models become more robust since the training focuses on common features of the target object over a set of training images. Unlike other weighting strategies, our training algorithm focuses on the error rate and allows for negative weights, which can be employed to encode rivaling structures into the model. The basic algorithm is presented here in conjunction with several extensions for fully automatic and faster processing. These include: (1) the automatic generation of models from training images and their iterative refinement, (2) the training of joint models for similar objects, and (3) a multi-level approach. Results   The algorithm is tested successfully for the knee in long-leg radiographs (97.6 % success rate), the vertebrae in C-arm CT (95.5 % success rate), and the femoral head in whole-body MR (100 % success rate). In addition, it is compared to Hough forests (Gall et al. in IEEE Trans Pattern Anal Mach Intell 33(11):2188–2202, 2011) for the task of knee localization (97.8 % success rate). Conclusion   The DGHT has proven to be a general procedure, which can be easily applied to various tasks with high success rates.
Footnotes
2
Note that there is no automatic identification of vertebrae. Instead, the localization results were allocated to their closest target point and the label of the annotation was used.
 
Literature
1.
go back to reference Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2):111–122CrossRef Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2):111–122CrossRef
2.
go back to reference Betke M, Hong H, Thomas D, Prince C, Ko JP (2003) Landmark detection in the chest and registration of lung surfaces with an application to nodule registration. Med Image Anal 7:265–281PubMedCrossRef Betke M, Hong H, Thomas D, Prince C, Ko JP (2003) Landmark detection in the chest and registration of lung surfaces with an application to nodule registration. Med Image Anal 7:265–281PubMedCrossRef
3.
go back to reference Beyerlein P (1998) Discriminative model combination. In: International conference on acoustics, speech, and signal processing, pp 481–484 Beyerlein P (1998) Discriminative model combination. In: International conference on acoustics, speech, and signal processing, pp 481–484
4.
go back to reference Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19:973–985PubMedCrossRef Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19:973–985PubMedCrossRef
5.
go back to reference Brunk M, Ruppertshofen H, Schmidt S, Beyerlein P, Schramm H (2011) Bone age classification using the discriminative generalized Hough transform. In: Bildverarbeitung für die Medizin, pp 284–288 Brunk M, Ruppertshofen H, Schmidt S, Beyerlein P, Schramm H (2011) Bone age classification using the discriminative generalized Hough transform. In: Bildverarbeitung für die Medizin, pp 284–288
6.
go back to reference Criminisi A, Shotton J, Robertson D, Konukoglu E (2011) Regression forests for efficient anatomy detection and localization in CT studies. In: Proceedings of the MICCAI 2010 workshop on medical computer vision, vol LNCS 6533, pp 106–117 Criminisi A, Shotton J, Robertson D, Konukoglu E (2011) Regression forests for efficient anatomy detection and localization in CT studies. In: Proceedings of the MICCAI 2010 workshop on medical computer vision, vol LNCS 6533, pp 106–117
7.
go back to reference Cristinacce D, Cootes T, Scott I (2004) A multi-stage approach to facial feature detection. In: British machine vision conference, pp 277–286 Cristinacce D, Cootes T, Scott I (2004) A multi-stage approach to facial feature detection. In: British machine vision conference, pp 277–286
8.
go back to reference Deselaers T, Keysers D, Ney H (2005) Discriminative training for object recognition using image patches. Comput Vis Pattern Recognit 2:157–162 Deselaers T, Keysers D, Ney H (2005) Discriminative training for object recognition using image patches. Comput Vis Pattern Recognit 2:157–162
9.
go back to reference Ecabert O, Thiran JP (2004) Adaptive Hough transform for the detection of natural shapes under weak affine transformations. Pattern Recognit Lett 25:1411–1419CrossRef Ecabert O, Thiran JP (2004) Adaptive Hough transform for the detection of natural shapes under weak affine transformations. Pattern Recognit Lett 25:1411–1419CrossRef
10.
go back to reference Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ et al (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201PubMedCrossRef Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ et al (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201PubMedCrossRef
11.
go back to reference Ehrhardt J, Handels H, Strathmann B, Malina T, Plötz W, Pöppl SJ (2003) Atlas-based recognition of anatomical structures and landmarks to support the virtual three-dimensional planning of hip operations. In: Medical image computed computer assisted intervention, vol LNCS 2878, pp 17–24 Ehrhardt J, Handels H, Strathmann B, Malina T, Plötz W, Pöppl SJ (2003) Atlas-based recognition of anatomical structures and landmarks to support the virtual three-dimensional planning of hip operations. In: Medical image computed computer assisted intervention, vol LNCS 2878, pp 17–24
12.
go back to reference Engel K, Toennies K (2010) Hierarchical vibrations for part-based recognition of complex objects. Pattern Recognit 43(8):2681–2691CrossRef Engel K, Toennies K (2010) Hierarchical vibrations for part-based recognition of complex objects. Pattern Recognit 43(8):2681–2691CrossRef
13.
go back to reference Fischer B, Brosig A, Welter P, Grouls C, Günther RW, Deserno TM (2010) Content-based image retrieval applied to bone age assessment. In: SPIE medical, imaging, vol 7624, pp 12–1-12-10 Fischer B, Brosig A, Welter P, Grouls C, Günther RW, Deserno TM (2010) Content-based image retrieval applied to bone age assessment. In: SPIE medical, imaging, vol 7624, pp 12–1-12-10
14.
go back to reference Gall J, Lempitsky V (2009) Class-specific Hough forests for object detection. In: Computer vision and pattern recognition, pp 1022–1029 Gall J, Lempitsky V (2009) Class-specific Hough forests for object detection. In: Computer vision and pattern recognition, pp 1022–1029
15.
go back to reference Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell 33(11):2188–2202PubMedCrossRef Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V (2011) Hough forests for object detection, tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell 33(11):2188–2202PubMedCrossRef
16.
go back to reference Gooßen A, Hermann E, Weber GM, Gernoth T, Pralow T, Grigat RR (2011) Model-based segmentation of pediatric and adult joints for orthopedic measurements in digital radiographs of the lower limbs. Comput Sci Res Dev 26(1–2):107–116CrossRef Gooßen A, Hermann E, Weber GM, Gernoth T, Pralow T, Grigat RR (2011) Model-based segmentation of pediatric and adult joints for orthopedic measurements in digital radiographs of the lower limbs. Comput Sci Res Dev 26(1–2):107–116CrossRef
17.
go back to reference Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H et al (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23:311–321PubMedCrossRef Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H et al (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23:311–321PubMedCrossRef
18.
go back to reference Hahmann F, Ruppertshofen H, Böer G, Stannarius R, Schramm H (2012) Eye localization using the discriminative generalized Hough transform. In: Pattern recognition, vol LNCS 7476, pp 155–614 Hahmann F, Ruppertshofen H, Böer G, Stannarius R, Schramm H (2012) Eye localization using the discriminative generalized Hough transform. In: Pattern recognition, vol LNCS 7476, pp 155–614
19.
go back to reference Heimann T, Münziger S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: Information processing in medical imaging, vol LNCS 4584, pp 1–12 Heimann T, Münziger S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: Information processing in medical imaging, vol LNCS 4584, pp 1–12
20.
go back to reference Heimann T, van Ginneken B, Styner M et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265PubMedCrossRef Heimann T, van Ginneken B, Styner M et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265PubMedCrossRef
21.
go back to reference Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A et al (2009) MR-based attenuation correction for a whole-body sequential PET/MR system. In: IEEE nuclear science symposium conference record, pp 3508–3512 Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A et al (2009) MR-based attenuation correction for a whole-body sequential PET/MR system. In: IEEE nuclear science symposium conference record, pp 3508–3512
22.
go back to reference Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van Ginneken B (2009) Multi-atlas-based segmentation with local decision fusion: application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28(7):1000–1010PubMedCrossRef Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van Ginneken B (2009) Multi-atlas-based segmentation with local decision fusion: application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28(7):1000–1010PubMedCrossRef
23.
go back to reference Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630CrossRef Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630CrossRef
24.
go back to reference Juang BH, Katagiri S (1992) Discriminative learning for minimum error classification. IEEE Trans Signal Process 40(12):3043–3054CrossRef Juang BH, Katagiri S (1992) Discriminative learning for minimum error classification. IEEE Trans Signal Process 40(12):3043–3054CrossRef
25.
go back to reference Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482PubMedCrossRef Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482PubMedCrossRef
26.
go back to reference Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comp Vis 77(1–3):259–289CrossRef Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comp Vis 77(1–3):259–289CrossRef
27.
go back to reference Lorenz C, von Berg J (2005) Fast automated object detection by recursive casting of search rays. In: Computer assisted radiology and surgery, vol 1281, pp 230–235 Lorenz C, von Berg J (2005) Fast automated object detection by recursive casting of search rays. In: Computer assisted radiology and surgery, vol 1281, pp 230–235
28.
go back to reference Maji S, Malik J (2009) Object detection using a max-margin Hough transform. In: Computer vision and pattern recognition, pp 1038–1045 Maji S, Malik J (2009) Object detection using a max-margin Hough transform. In: Computer vision and pattern recognition, pp 1038–1045
29.
go back to reference Okada R (2009) Discriminative generalized Hough transform for object detection. In: International conference on computer vision, pp 2000–2005 Okada R (2009) Discriminative generalized Hough transform for object detection. In: International conference on computer vision, pp 2000–2005
30.
go back to reference Pai A, Narasimhamurthy A, Rao VSV, Vaidya V (2011) Automated localization of vertebra landmarks in MRI images. In: SPIE medical, imaging, vol 7963, pp 3K-1–3K-6 Pai A, Narasimhamurthy A, Rao VSV, Vaidya V (2011) Automated localization of vertebra landmarks in MRI images. In: SPIE medical, imaging, vol 7963, pp 3K-1–3K-6
31.
go back to reference Pauly O, Glocker B, Criminisi A, Mateus D, Möller AM, Nekolla S, Navab N (2011) Fast multiple organ detection and localization in whole-body MR dixon sequences. In: Medical image computing and computer assisted interventions, vol LNCS 6893, pp 239–247 Pauly O, Glocker B, Criminisi A, Mateus D, Möller AM, Nekolla S, Navab N (2011) Fast multiple organ detection and localization in whole-body MR dixon sequences. In: Medical image computing and computer assisted interventions, vol LNCS 6893, pp 239–247
32.
go back to reference Petersen BTL, Engh MGA (1988) Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty 3(1):62–72CrossRef Petersen BTL, Engh MGA (1988) Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty 3(1):62–72CrossRef
33.
go back to reference Ruppertshofen H, Künne D, Lorenz C, Schmidt S, Beyerlein P, Salah Z et al (2011a) Multi-level approach for the discriminative generalized Hough transform. In: Computer-und roboterassistierte Chirurgie, pp 67–70 Ruppertshofen H, Künne D, Lorenz C, Schmidt S, Beyerlein P, Salah Z et al (2011a) Multi-level approach for the discriminative generalized Hough transform. In: Computer-und roboterassistierte Chirurgie, pp 67–70
34.
go back to reference Ruppertshofen H, Lorenz C, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2011b) Discriminative generalized Hough transform for localization of joints in the lower extremities. Comput Sci Res Dev 26(1–2):97–105CrossRef Ruppertshofen H, Lorenz C, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2011b) Discriminative generalized Hough transform for localization of joints in the lower extremities. Comput Sci Res Dev 26(1–2):97–105CrossRef
35.
go back to reference Ruppertshofen H, Lorenz C, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2011c) Shape model training for concurrent localization of the left and right knee. In: SPIE medical, imaging, vol 7962, pp 41-1–41-8 Ruppertshofen H, Lorenz C, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2011c) Shape model training for concurrent localization of the left and right knee. In: SPIE medical, imaging, vol 7962, pp 41-1–41-8
36.
go back to reference Ruppertshofen H, Bülow T, von Berg J, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2012) A multidimensional model for localization of highly variable objects. In: SPIE medical imaging, vol 8314, p 83142L Ruppertshofen H, Bülow T, von Berg J, Schmidt S, Beyerlein P, Salah Z, Rose G, Schramm H (2012) A multidimensional model for localization of highly variable objects. In: SPIE medical imaging, vol 8314, p 83142L
37.
go back to reference Schapire RE (2003) Nonlinear estimation and classification, Springer, chap. The boosting approach to machine learning: an overview, pp 149–172 Schapire RE (2003) Nonlinear estimation and classification, Springer, chap. The boosting approach to machine learning: an overview, pp 149–172
38.
go back to reference Schramm H, Ecabert O, Peters J, Philomin V, Weese J (2006) Towards fully automatic object detection and segmentation. In: SPIE medical imaging, vol 6144, pp 11–20 Schramm H, Ecabert O, Peters J, Philomin V, Weese J (2006) Towards fully automatic object detection and segmentation. In: SPIE medical imaging, vol 6144, pp 11–20
39.
go back to reference Seim H, Kainmüller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: Eurographics workshop on visual computing for biomedicine, pp 93–100 Seim H, Kainmüller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: Eurographics workshop on visual computing for biomedicine, pp 93–100
40.
go back to reference Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Computer vision and pattern recognition, pp 511–518 Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Computer vision and pattern recognition, pp 511–518
41.
go back to reference Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27:1668–1681PubMedCrossRef Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27:1668–1681PubMedCrossRef
42.
go back to reference Zheng Y, Georgescu B, Comaniciu D (2009) Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images. In: Information processing in medical imaging, vol LNCS 5636, pp 411–422 Zheng Y, Georgescu B, Comaniciu D (2009) Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images. In: Information processing in medical imaging, vol LNCS 5636, pp 411–422
Metadata
Title
Discriminative generalized Hough transform for object localization in medical images
Authors
Heike Ruppertshofen
Cristian Lorenz
Georg Rose
Hauke Schramm
Publication date
01-07-2013
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 4/2013
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-013-0817-7

Other articles of this Issue 4/2013

International Journal of Computer Assisted Radiology and Surgery 4/2013 Go to the issue