Skip to main content
Top
Published in: Targeted Oncology 6/2020

01-12-2020 | Multiple Myeloma | Review Article

Targeting Nuclear Export Proteins in Multiple Myeloma Therapy

Authors: Nicholas Theodoropoulos, Guido Lancman, Ajai Chari

Published in: Targeted Oncology | Issue 6/2020

Login to get access

Abstract

Multiple myeloma (MM) is an incurable malignancy of plasma cells with a clinical course characterized by multiple relapses and treatment refractoriness. While recent treatment advancements have extended overall survival (OS), refractory MM has a poor prognosis, with a median OS of between 4 and 6 months. Nuclear export inhibition, specifically inhibition of CRM1/XPO1, is an emerging novel treatment modality that has shown promise in treatment-refractory MM. Initially discovered in yeast in 1983, early clinical applications were met with significant toxicities that limited their utility. The creation of small molecule inhibitors of nuclear export (SINE) has improved on toxicity limitations and has led to investigation in a number of malignancies at the preclinical and clinical stages. Preclinical studies of SINEs in MM have shown that these molecules are cytotoxic to myeloma cells, play a role in therapy resensitization, and suggest a role in limiting bone disease progression. In July 2019, selinexor became the first nuclear export inhibitor approved for use in relapsed/refractory MM based on the STORM trial. As of May 2020, there were eight ongoing trials combining selinexor with standard treatment regimens in relapsed/refractory MM. Eltanexor, a second-generation SINE, is also under investigation and has shown preliminary signs of efficacy in an early clinical trial while potentially having an improved toxicity profile compared with selinexor. Results in ongoing trials will help further define the role of SINEs in MM.
Literature
1.
go back to reference Alanazi F, Kwa F, Burchall G, Jackson DE. New generation drugs for treatment of multiple myeloma. Drug Discov Today. 2020;25(2):367–79.PubMed Alanazi F, Kwa F, Burchall G, Jackson DE. New generation drugs for treatment of multiple myeloma. Drug Discov Today. 2020;25(2):367–79.PubMed
2.
go back to reference Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31.PubMed Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31.PubMed
3.
go back to reference Gandhi UH, Cornell R, Lakshman A, Gahvari Z, McGehee E, Jagosky M, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33(9):2266–75.PubMedPubMedCentral Gandhi UH, Cornell R, Lakshman A, Gahvari Z, McGehee E, Jagosky M, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33(9):2266–75.PubMedPubMedCentral
4.
go back to reference Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol. 2020;83(8):1021–32. Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol. 2020;83(8):1021–32.
5.
go back to reference Huang ZL, Gao M, Li QY, Tao K, Xiao Q, Caso WX, et al. Induction of apoptosis by directing oncogenic Bcr-Abl into the nucleus. Oncotarget. 2013;4(12):2249–60.PubMedPubMedCentral Huang ZL, Gao M, Li QY, Tao K, Xiao Q, Caso WX, et al. Induction of apoptosis by directing oncogenic Bcr-Abl into the nucleus. Oncotarget. 2013;4(12):2249–60.PubMedPubMedCentral
6.
go back to reference Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden K. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012;2(2):207–15.PubMedPubMedCentral Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden K. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012;2(2):207–15.PubMedPubMedCentral
7.
go back to reference Zhou F, Qiu W, Yao R, Xiang J, Sun X, Liu S, et al. CRM1 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Med Oncol. 2013;30(4):726.PubMed Zhou F, Qiu W, Yao R, Xiang J, Sun X, Liu S, et al. CRM1 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Med Oncol. 2013;30(4):726.PubMed
8.
go back to reference Kojima K, Kornblau S, Ruvolo V, Dilip A, Dubburi S, Davis R, et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013;121(20):4166–74.PubMedPubMedCentral Kojima K, Kornblau S, Ruvolo V, Dilip A, Dubburi S, Davis R, et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013;121(20):4166–74.PubMedPubMedCentral
9.
go back to reference Gandhi UH, Senapedis W, Baloglu E, Unger T, Chari A, Vagl D, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma. Clin Lymph Myeloma Leuk. 2018;18(5):335–45. Gandhi UH, Senapedis W, Baloglu E, Unger T, Chari A, Vagl D, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma. Clin Lymph Myeloma Leuk. 2018;18(5):335–45.
10.
go back to reference Schmidt J, Braggio E, Kortuem KM, Egan JB, Zhu YX, Xin CS, et al. Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia. 2013;27(12):2357–65.PubMedPubMedCentral Schmidt J, Braggio E, Kortuem KM, Egan JB, Zhu YX, Xin CS, et al. Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia. 2013;27(12):2357–65.PubMedPubMedCentral
11.
go back to reference Camus V, Miloudi H, Taly A, Sola B, Jardin F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol. 2017;10(1):47.PubMedPubMedCentral Camus V, Miloudi H, Taly A, Sola B, Jardin F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol. 2017;10(1):47.PubMedPubMedCentral
12.
go back to reference Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Kumar S, et al. XPO1 is a critical player for bortezomib resistance in multiple myeloma: a quantitative proteomic approach. J Proteom. 2019;209:103504. Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Kumar S, et al. XPO1 is a critical player for bortezomib resistance in multiple myeloma: a quantitative proteomic approach. J Proteom. 2019;209:103504.
14.
go back to reference Hamamoto T, Seto H, Beppu T. Leptomycins A and B, new antifungal antibiotics II. Structure elucidation. J Antibiot (Tokyo). 1983;36(6):646–50. Hamamoto T, Seto H, Beppu T. Leptomycins A and B, new antifungal antibiotics II. Structure elucidation. J Antibiot (Tokyo). 1983;36(6):646–50.
15.
go back to reference Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem. 1994;269(9):6320–4.PubMed Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem. 1994;269(9):6320–4.PubMed
16.
go back to reference Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner E, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96(16):9112–7.PubMed Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner E, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96(16):9112–7.PubMed
17.
go back to reference Roberts BJ, Hamelehle KL, Sebolt JS, Leopold WR. In vivo and in vitro anticancer activity of the structurally novel and highly potent antibiotic CI-940 and its hydroxy analog (PD 114,721). Cancer Chemother Pharmacol. 1986;16(2):95–101.PubMed Roberts BJ, Hamelehle KL, Sebolt JS, Leopold WR. In vivo and in vitro anticancer activity of the structurally novel and highly potent antibiotic CI-940 and its hydroxy analog (PD 114,721). Cancer Chemother Pharmacol. 1986;16(2):95–101.PubMed
19.
go back to reference Burzlaff A, Kalesse M, Kasper C, Scheper T. Multi parameter in vitro testing of ratjadone using flow cytometry. Appl Microbiol Biotechnol. 2003;62(2–3):174–9.PubMed Burzlaff A, Kalesse M, Kasper C, Scheper T. Multi parameter in vitro testing of ratjadone using flow cytometry. Appl Microbiol Biotechnol. 2003;62(2–3):174–9.PubMed
20.
go back to reference Turner JG, Marchion DC, Dawson JL, Emmons MF, Hazlehurst LA, Washausen P, et al. Human multiple myeloma cells are sensitized to topoisomerase II inhibitors by CRM1 inhibition. Cancer Res. 2009;69(17):6899–905.PubMedPubMedCentral Turner JG, Marchion DC, Dawson JL, Emmons MF, Hazlehurst LA, Washausen P, et al. Human multiple myeloma cells are sensitized to topoisomerase II inhibitors by CRM1 inhibition. Cancer Res. 2009;69(17):6899–905.PubMedPubMedCentral
21.
go back to reference Hatcher H, Planalp R, Cho J, Torti F, Torti S. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.PubMedPubMedCentral Hatcher H, Planalp R, Cho J, Torti F, Torti S. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.PubMedPubMedCentral
22.
go back to reference Mingshan N, Sinjin W, Yongliag Y. CRM1 is a cellular target of curcumin: new insights for the myriad of biological effects of an ancient spice. Traffic. 2013;14(10):1042–52. Mingshan N, Sinjin W, Yongliag Y. CRM1 is a cellular target of curcumin: new insights for the myriad of biological effects of an ancient spice. Traffic. 2013;14(10):1042–52.
23.
go back to reference Lee EW, Oh W, Song HP, Kim WK. Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53. BMB Rep. 2017;50(7):373–8.PubMedPubMedCentral Lee EW, Oh W, Song HP, Kim WK. Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53. BMB Rep. 2017;50(7):373–8.PubMedPubMedCentral
24.
go back to reference Gomez-Bougie P, Halliez M, Maïga S, Godon C, Kervoelen C, Pellat-Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16(1):60–5.PubMed Gomez-Bougie P, Halliez M, Maïga S, Godon C, Kervoelen C, Pellat-Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16(1):60–5.PubMed
25.
go back to reference Golombick T, Diamond T, Manoharan A, Ramakrishna R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol. 2012;87(5):455–60.PubMed Golombick T, Diamond T, Manoharan A, Ramakrishna R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol. 2012;87(5):455–60.PubMed
26.
go back to reference Ramakrishna R, Diamond T, Alexander W, Manoharan A, Golombick T. Use of curcumin in multiple myeloma patients intolerant of steroid therapy. Clin Case Rep. 2020;8(4):739–44.PubMedPubMedCentral Ramakrishna R, Diamond T, Alexander W, Manoharan A, Golombick T. Use of curcumin in multiple myeloma patients intolerant of steroid therapy. Clin Case Rep. 2020;8(4):739–44.PubMedPubMedCentral
27.
go back to reference Bolger G, Licollari A, Bagshaw R, Tan A, Greil R, Vcelar B, et al. Intense uptake of liposomal curcumin by multiple myeloma cell lines: comparison to normal lymphocytes, red blood cells and chronic lymphocytic leukemia cells. Anticancer Res. 2019;39(3):1161–8.PubMed Bolger G, Licollari A, Bagshaw R, Tan A, Greil R, Vcelar B, et al. Intense uptake of liposomal curcumin by multiple myeloma cell lines: comparison to normal lymphocytes, red blood cells and chronic lymphocytic leukemia cells. Anticancer Res. 2019;39(3):1161–8.PubMed
28.
go back to reference Greil R, Greil-Ressler S, Weiss L, Schonlieb C, Magnes T, Radl B, et al. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (LipocurcTM) in patients with locally advanced or metastatic cancer. Cancer Chemother Pharmacol. 2018;82(4):695–706.PubMedPubMedCentral Greil R, Greil-Ressler S, Weiss L, Schonlieb C, Magnes T, Radl B, et al. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (LipocurcTM) in patients with locally advanced or metastatic cancer. Cancer Chemother Pharmacol. 2018;82(4):695–706.PubMedPubMedCentral
29.
go back to reference Sakakibara K, Saito N, Sato T, Suzuki A, Hasegawa Y, Friedman J, et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood. 2011;118(14):3922–31.PubMed Sakakibara K, Saito N, Sato T, Suzuki A, Hasegawa Y, Friedman J, et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood. 2011;118(14):3922–31.PubMed
30.
go back to reference Wang J, Barve M, Chiorean E, LoRusso P, Courtney K, Qi D, et al. Interim results from trial of SL-801, a novel XPO-1 inhibitor, in patients with advanced solid tumours. Ann Oncol. 2019;30(Suppl 5):v175. Wang J, Barve M, Chiorean E, LoRusso P, Courtney K, Qi D, et al. Interim results from trial of SL-801, a novel XPO-1 inhibitor, in patients with advanced solid tumours. Ann Oncol. 2019;30(Suppl 5):v175.
31.
go back to reference Kalid O, Warshaviak DT, Shechter S, Sherman W, Shacham S. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. J Comput Aided Mol Des. 2020;26(11):1217–28. Kalid O, Warshaviak DT, Shechter S, Sherman W, Shacham S. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. J Comput Aided Mol Des. 2020;26(11):1217–28.
32.
go back to reference Parikh K, Cang S, Sekhri A, Liu D. Selective inhibitors of nuclear export (SINE)–a novel class of anti-cancer agents. J Hematol Oncol. 2014;15(7):78. Parikh K, Cang S, Sekhri A, Liu D. Selective inhibitors of nuclear export (SINE)–a novel class of anti-cancer agents. J Hematol Oncol. 2014;15(7):78.
33.
go back to reference Sendino M, Omaetxebarria M, Rodriguez J. Hitting a moving target: inhibition of the nuclear export receptor XPO1/CRM1 as a therapeutic approach in cancer. Cancer Drug Resist. 2018;1:139–63. Sendino M, Omaetxebarria M, Rodriguez J. Hitting a moving target: inhibition of the nuclear export receptor XPO1/CRM1 as a therapeutic approach in cancer. Cancer Drug Resist. 2018;1:139–63.
34.
go back to reference Turner JG, Dawson J, Emmons MF, Cubitt CL, Kauffman M, Shacham S, et al. CRM1 inhibition sensitizes drug resistant human myeloma cells to topoisomerase II and proteasome inhibitors both in vitro and ex vivo. J Cancer. 2013;4(8):614–25.PubMedPubMedCentral Turner JG, Dawson J, Emmons MF, Cubitt CL, Kauffman M, Shacham S, et al. CRM1 inhibition sensitizes drug resistant human myeloma cells to topoisomerase II and proteasome inhibitors both in vitro and ex vivo. J Cancer. 2013;4(8):614–25.PubMedPubMedCentral
35.
go back to reference Rosebeck S, Alonge M, Kandarpa M, Mayampurath A, Volchenboum S, Jasielec J, et al. Synergistic myeloma cell death via novel intracellular activation of caspase-10-dependent apoptosis by carfilzomib and selinexor. Mol Cancer Ther. 2016;15(1):60–71.PubMed Rosebeck S, Alonge M, Kandarpa M, Mayampurath A, Volchenboum S, Jasielec J, et al. Synergistic myeloma cell death via novel intracellular activation of caspase-10-dependent apoptosis by carfilzomib and selinexor. Mol Cancer Ther. 2016;15(1):60–71.PubMed
36.
go back to reference Turner JG, Dawson JL, Grant S, Shain K, Dalton W, Dai Y, et al. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol. 2016;9(1):73.PubMedPubMedCentral Turner JG, Dawson JL, Grant S, Shain K, Dalton W, Dai Y, et al. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol. 2016;9(1):73.PubMedPubMedCentral
37.
go back to reference Turner JG, Kashyap T, Dawson JL, Gomez J, Bauer A, Grant S, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7(48):78896–909.PubMedPubMedCentral Turner JG, Kashyap T, Dawson JL, Gomez J, Bauer A, Grant S, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7(48):78896–909.PubMedPubMedCentral
38.
go back to reference Muz B, Azab F, de la Puente P, Landesman Y, Zab AK. Selinexor overcomes hypoxia-induced drug resistance in multiple myeloma. Transl Oncol. 2017;10(4):632–40.PubMedPubMedCentral Muz B, Azab F, de la Puente P, Landesman Y, Zab AK. Selinexor overcomes hypoxia-induced drug resistance in multiple myeloma. Transl Oncol. 2017;10(4):632–40.PubMedPubMedCentral
39.
go back to reference Tai YT, Landesman Y, Acharya C, Calle Y, Zhong MY, Cea M, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28(1):155–65.PubMed Tai YT, Landesman Y, Acharya C, Calle Y, Zhong MY, Cea M, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28(1):155–65.PubMed
40.
go back to reference Argueta C, Kashyap T, Klebanov B, Unger T, Guo C, Harrington S, et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget. 2018;9(39):25529–44.PubMedPubMedCentral Argueta C, Kashyap T, Klebanov B, Unger T, Guo C, Harrington S, et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget. 2018;9(39):25529–44.PubMedPubMedCentral
41.
go back to reference Chari A, Vogl D, Gavriatopoulou M, Nooka A, Yee A, Huff C, et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med. 2019;381(8):727–38.PubMed Chari A, Vogl D, Gavriatopoulou M, Nooka A, Yee A, Huff C, et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med. 2019;381(8):727–38.PubMed
42.
go back to reference Aapro MS, Walko CM. Aprepitant: drug-drug interactions in perspective. Ann Oncol. 2010;21(12):2316–23.PubMed Aapro MS, Walko CM. Aprepitant: drug-drug interactions in perspective. Ann Oncol. 2010;21(12):2316–23.PubMed
43.
go back to reference Dimopoulos M, Delimpasi S, Simonova M, Spicka I, Ludek P, Kryachok I, et al. Weekly selinexor, bortezomib, and dexamethasone (SVd) versus twice weekly bortezomib and dexamethasone (Vd) in patients with multiple myeloma (MM) after one to three prior therapies: initial results of the phase III BOSTON study. J Clin Oncol. 2020;38(Suppl 15):8501. Dimopoulos M, Delimpasi S, Simonova M, Spicka I, Ludek P, Kryachok I, et al. Weekly selinexor, bortezomib, and dexamethasone (SVd) versus twice weekly bortezomib and dexamethasone (Vd) in patients with multiple myeloma (MM) after one to three prior therapies: initial results of the phase III BOSTON study. J Clin Oncol. 2020;38(Suppl 15):8501.
44.
go back to reference Chari A, Vogl D, Jagannath S, Jasielec J, Unger T, DeCastro A, et al. Selinexor-based regimens for the treatment of myeloma refractory to chimeric antigen receptor T cell therapy. Br J Haematol. 2020;189:126–30. Chari A, Vogl D, Jagannath S, Jasielec J, Unger T, DeCastro A, et al. Selinexor-based regimens for the treatment of myeloma refractory to chimeric antigen receptor T cell therapy. Br J Haematol. 2020;189:126–30.
45.
go back to reference Jakubowiak AJ, Jasielec J, Rosenbaum CA, Cole CE, Chari A, Mikael J, et al. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br J Haematol. 2019;186(4):549–60.PubMedPubMedCentral Jakubowiak AJ, Jasielec J, Rosenbaum CA, Cole CE, Chari A, Mikael J, et al. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br J Haematol. 2019;186(4):549–60.PubMedPubMedCentral
46.
go back to reference Chen C, Gasparetto C, White D, Kotb R, Lipe B, Sutherland H, et al. Selinexor, pomalidomide, and dexamethaspone (SPD) in patients with relapsed or refractory multiple myeloma. EHA 24 Abstract PF587. 2019. Chen C, Gasparetto C, White D, Kotb R, Lipe B, Sutherland H, et al. Selinexor, pomalidomide, and dexamethaspone (SPD) in patients with relapsed or refractory multiple myeloma. EHA 24 Abstract PF587. 2019.
48.
go back to reference White D, LeBlanc R, Venner C, Bahlis N, Lentzsch S, Gasparetto C, et al. Safety and efficacy of the combination of selinexor, lenalidomide and dexamethasone (SRd) in patients with relapsed/refractory multiple myeloma (RRMM) [abstract no. 3532019]. In: Presented at the 17th International Myeloma Workshop; 12–15 Sep 2019: Boston, MA. White D, LeBlanc R, Venner C, Bahlis N, Lentzsch S, Gasparetto C, et al. Safety and efficacy of the combination of selinexor, lenalidomide and dexamethasone (SRd) in patients with relapsed/refractory multiple myeloma (RRMM) [abstract no. 3532019]. In: Presented at the 17th International Myeloma Workshop; 12–15 Sep 2019: Boston, MA.
49.
go back to reference Gasparetto C, Lentzsch S, Gary J, Callander N, Tuchman S, Bahlis N, et al. Selinexor, daratumumab, and dexamethasone in patients with relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2020;38(Suppl 15):8510. Gasparetto C, Lentzsch S, Gary J, Callander N, Tuchman S, Bahlis N, et al. Selinexor, daratumumab, and dexamethasone in patients with relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2020;38(Suppl 15):8510.
50.
go back to reference Gasparetto C, Lipe B, Tuchman S, Callander N, Lentzsch S, Baljevic M, et al. Once weekly selinexor, carfilzomib, and dexamethasone (SKd) in patients with relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2020;38(Suppl 15):8530. Gasparetto C, Lipe B, Tuchman S, Callander N, Lentzsch S, Baljevic M, et al. Once weekly selinexor, carfilzomib, and dexamethasone (SKd) in patients with relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2020;38(Suppl 15):8530.
51.
go back to reference Hing ZA, Fung HY, Ranganathan P, Mitchell S, El-Gamal D, Woyach JA, et al. Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia. 2016;30(12):2364–72.PubMedPubMedCentral Hing ZA, Fung HY, Ranganathan P, Mitchell S, El-Gamal D, Woyach JA, et al. Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia. 2016;30(12):2364–72.PubMedPubMedCentral
52.
go back to reference Turney J, Dawson J, Cubitt C, Baluglo E, Grant S, Dai Y, et al. Next generation XPO1 inhibitor KPT-8602 for the treatment of drug-resistant multiple myeloma. Blood. 2015;126(23):1818. Turney J, Dawson J, Cubitt C, Baluglo E, Grant S, Dai Y, et al. Next generation XPO1 inhibitor KPT-8602 for the treatment of drug-resistant multiple myeloma. Blood. 2015;126(23):1818.
54.
go back to reference Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67.PubMed Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67.PubMed
55.
go back to reference Kortuem K, Zidich K, Schuster S, Khan M, Jimenez-Zepeda V, Mikhael J, et al. Activity of 129 single-agent drugs in 228 phase I and II clinical trials in multiple myeloma. Clin Lymph Myeloma Leuk. 2014;14(4):284–90. Kortuem K, Zidich K, Schuster S, Khan M, Jimenez-Zepeda V, Mikhael J, et al. Activity of 129 single-agent drugs in 228 phase I and II clinical trials in multiple myeloma. Clin Lymph Myeloma Leuk. 2014;14(4):284–90.
56.
go back to reference Gounder M, Zer A, Tap W, Salah S, Dickson M, Gupta A, et al. Phase IB study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol. 2016;34(26):3166–74.PubMedPubMedCentral Gounder M, Zer A, Tap W, Salah S, Dickson M, Gupta A, et al. Phase IB study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol. 2016;34(26):3166–74.PubMedPubMedCentral
57.
go back to reference Abdul Razak AR, Mau-Soerensen M, Gabrail NY, et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142–50.PubMedPubMedCentral Abdul Razak AR, Mau-Soerensen M, Gabrail NY, et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142–50.PubMedPubMedCentral
59.
go back to reference Lassman A, Wen P, Bent V, Plotkin S, Walenkamp A, Huang X, et al. Efficacy and safety of selinexor in recurrent glioblastoma. J Clin Oncol. 2019;37(Suppl 15):2005. Lassman A, Wen P, Bent V, Plotkin S, Walenkamp A, Huang X, et al. Efficacy and safety of selinexor in recurrent glioblastoma. J Clin Oncol. 2019;37(Suppl 15):2005.
Metadata
Title
Targeting Nuclear Export Proteins in Multiple Myeloma Therapy
Authors
Nicholas Theodoropoulos
Guido Lancman
Ajai Chari
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 6/2020
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-020-00758-2

Other articles of this Issue 6/2020

Targeted Oncology 6/2020 Go to the issue

Adis Biosimilar Brief

SB8: A Bevacizumab Biosimilar

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine