Skip to main content
Top
Published in: Targeted Oncology 6/2020

Open Access 01-12-2020 | Prostate Cancer | Review Article

Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data

Authors: Dawid Sigorski, Ewa Iżycka-Świeszewska, Lubomir Bodnar

Published in: Targeted Oncology | Issue 6/2020

Login to get access

Abstract

Genomic instability is one of the hallmarks of cancer. The incidence of genetic alterations in homologous recombination repair genes increases during cancer progression, and 20% of prostate cancers (PCas) have defects in DNA repair genes. Several somatic and germline gene alterations drive prostate cancer tumorigenesis, and the most important of these are BRCA2, BRCA1, ATM and CHEK2. There is a group of BRCAness tumours that share phenotypic and genotypic properties with classical BRCA-mutated tumours. Poly(ADP-ribose) polymerase inhibitors (PARPis) show synthetic lethality in cancer cells with impaired homologous recombination genes, and patients with these alterations are candidates for PARPi therapy. Androgen deprivation therapy is the mainstay of PCa therapy. PARPis decrease androgen signalling by interaction with molecular mechanisms of the androgen nuclear complex. The PROFOUND phase III trial, comparing olaparib with enzalutamide/abiraterone therapy, revealed increased radiological progression-free survival (rPFS) and overall survival (OS) among patients with metastatic castration-resistant prostate cancer (mCRPC) with BRCA1, BRCA2 or ATM mutations. The clinical efficacy of PARPis has been confirmed in ovarian, breast, pancreatic and recently also in a subset of PCa. There is growing evidence that molecular tumour boards are the future of the oncological therapeutic approach in prostate cancer. In this review, we summarise the data concerning the molecular mechanisms and preclinical and clinical data of PARPis in PCa.
Literature
1.
go back to reference Wallis CJD, Nam RK. Prostate cancer genetics: a review. EJIFCC. Int Fed Clin Chem Lab Med. 2015;26:79–91. Wallis CJD, Nam RK. Prostate cancer genetics: a review. EJIFCC. Int Fed Clin Chem Lab Med. 2015;26:79–91.
3.
go back to reference Mottet N, van den Bergh RC., Briers E, Cornford P, De Santis M, Fanti S. EAU Guidelines: Prostate Cancer | Uroweb. EAU Guidel. Edn. In: Present. EAU Annu. Congr. Barcelona 2019. 2020. Mottet N, van den Bergh RC., Briers E, Cornford P, De Santis M, Fanti S. EAU Guidelines: Prostate Cancer | Uroweb. EAU Guidel. Edn. In: Present. EAU Annu. Congr. Barcelona 2019. 2020.
4.
5.
go back to reference Oh M, Alkhushaym N, Fallatah S, Althagafi A, Aljadeed R, Alsowaida Y, et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate. 2019;79:880–95.PubMedCrossRef Oh M, Alkhushaym N, Fallatah S, Althagafi A, Aljadeed R, Alsowaida Y, et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis. Prostate. 2019;79:880–95.PubMedCrossRef
6.
go back to reference Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl. 2012;68:409–14.CrossRef Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl. 2012;68:409–14.CrossRef
8.
go back to reference Roy R, Chun J, Powell SN. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat Rev Cancer. 2012; p. 68–78. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat Rev Cancer. 2012; p. 68–78.
9.
go back to reference Farmer H, McCabe H, Lord CJ, Tutt AHJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMed Farmer H, McCabe H, Lord CJ, Tutt AHJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMed
11.
12.
go back to reference Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.PubMedPubMedCentralCrossRef Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.PubMedPubMedCentralCrossRef
13.
go back to reference Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.PubMedPubMedCentralCrossRef Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.PubMedPubMedCentralCrossRef
14.
go back to reference Abida W, Bryce AH, Balar AV, Chatta GS, Dawson NA, Guancial EA, et al. TRITON2: an international, multicenter, open-label, phase II study of the PARP inhibitor rucaparib in patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J Clin Oncol. 2018;36:TPS388.CrossRef Abida W, Bryce AH, Balar AV, Chatta GS, Dawson NA, Guancial EA, et al. TRITON2: an international, multicenter, open-label, phase II study of the PARP inhibitor rucaparib in patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J Clin Oncol. 2018;36:TPS388.CrossRef
15.
go back to reference Fizazi K, Maillard A, Penel N, Baciarello G, Allouache D, Daugaard G, et al. A phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04). Ann Oncol. 2019;30:v851.CrossRef Fizazi K, Maillard A, Penel N, Baciarello G, Allouache D, Daugaard G, et al. A phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04). Ann Oncol. 2019;30:v851.CrossRef
17.
go back to reference Morales JC, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24:15–28.PubMedPubMedCentralCrossRef Morales JC, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24:15–28.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Pezaro C. PARP inhibitor combinations in prostate cancer. Ther Adv Med Oncol. 2020;12:1–10.CrossRef Pezaro C. PARP inhibitor combinations in prostate cancer. Ther Adv Med Oncol. 2020;12:1–10.CrossRef
20.
go back to reference Asim M, Tarish F, Zecchini HI, Sanjiv K, Gelali E, Massie CE, et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017;8:394.CrossRef Asim M, Tarish F, Zecchini HI, Sanjiv K, Gelali E, Massie CE, et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017;8:394.CrossRef
21.
go back to reference Yar MS, Haider K, Gohel V, Siddiqui NA, Kamal A. Synthetic lethality on drug discovery: an update on cancer therapy. Expert Opin Drug Discov. 2020; p. 823–32. Yar MS, Haider K, Gohel V, Siddiqui NA, Kamal A. Synthetic lethality on drug discovery: an update on cancer therapy. Expert Opin Drug Discov. 2020; p. 823–32.
22.
go back to reference Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N, et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 2010;70:8045–54.PubMedPubMedCentralCrossRef Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N, et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 2010;70:8045–54.PubMedPubMedCentralCrossRef
23.
go back to reference Veskimäe K, Staff S, Grönholm A, Pesu M, Laaksonen M, Nykter M, et al. Assessment of PARP protein expression in epithelial ovarian cancer by ELISA pharmacodynamic assay and immunohistochemistry. Tumor Biol S. 2016;37:11991–9.CrossRef Veskimäe K, Staff S, Grönholm A, Pesu M, Laaksonen M, Nykter M, et al. Assessment of PARP protein expression in epithelial ovarian cancer by ELISA pharmacodynamic assay and immunohistochemistry. Tumor Biol S. 2016;37:11991–9.CrossRef
24.
go back to reference Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci USA. 2019;116:14573–82.PubMedCrossRefPubMedCentral Gui B, Gui F, Takai T, Feng C, Bai X, Fazli L, et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc Natl Acad Sci USA. 2019;116:14573–82.PubMedCrossRefPubMedCentral
26.
go back to reference Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Heal. 2019;37:288–95.CrossRef Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Heal. 2019;37:288–95.CrossRef
27.
go back to reference Gerhardt J, Montani M, Wild P, Beer M, Huber F, Hermanns T, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 2012;180:848–61.PubMedCrossRef Gerhardt J, Montani M, Wild P, Beer M, Huber F, Hermanns T, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 2012;180:848–61.PubMedCrossRef
28.
go back to reference Schiewer MJ, Goodwin JF, Han S, Chad Brenner J, Augello MA, Dean JL, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2:1134–49.PubMedPubMedCentralCrossRef Schiewer MJ, Goodwin JF, Han S, Chad Brenner J, Augello MA, Dean JL, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2:1134–49.PubMedPubMedCentralCrossRef
29.
go back to reference Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35:403–14.PubMedCrossRef Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35:403–14.PubMedCrossRef
30.
go back to reference Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.PubMedPubMedCentralCrossRef Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.PubMedPubMedCentralCrossRef
31.
go back to reference Arce S, Athie A, Pritchard CC, Mateo J. Germline and somatic defects in DNA repair pathways in prostate cancer. Adv Exp Med Biol. 2019;1210:279–300.PubMedCrossRef Arce S, Athie A, Pritchard CC, Mateo J. Germline and somatic defects in DNA repair pathways in prostate cancer. Adv Exp Med Biol. 2019;1210:279–300.PubMedCrossRef
32.
go back to reference Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of neural component of tumor microenvironment in prostate cancer. Pathobiology. 2020;87:87–99.PubMedCrossRef Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of neural component of tumor microenvironment in prostate cancer. Pathobiology. 2020;87:87–99.PubMedCrossRef
33.
go back to reference Horvath EM, Zsengellér ZK, Szabo C. Quantification of PARP activity in human tissues: Ex Vivo assays in blood cells and immunohistochemistry in human biopsies. Methods Mol Biol. 2011;780:267–75.PubMedPubMedCentralCrossRef Horvath EM, Zsengellér ZK, Szabo C. Quantification of PARP activity in human tissues: Ex Vivo assays in blood cells and immunohistochemistry in human biopsies. Methods Mol Biol. 2011;780:267–75.PubMedPubMedCentralCrossRef
35.
go back to reference Pu H, Horbinski C, Hensley PJ, Matuszak EA, Atkinson T, Kyprianou N. PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. Carcinogenesis. 2014;35:2592–601.PubMedPubMedCentralCrossRef Pu H, Horbinski C, Hensley PJ, Matuszak EA, Atkinson T, Kyprianou N. PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. Carcinogenesis. 2014;35:2592–601.PubMedPubMedCentralCrossRef
36.
go back to reference Barboro P, Ferrari N, Capaia M, Petretto A, Salvi S, Boccardo S, et al. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: new player in tumor progression. Int J Cancer. 2015;137:1574–86.PubMedCrossRef Barboro P, Ferrari N, Capaia M, Petretto A, Salvi S, Boccardo S, et al. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: new player in tumor progression. Int J Cancer. 2015;137:1574–86.PubMedCrossRef
37.
go back to reference Salemi M, Galia A, Fraggetta F, La Corte C, Pepe P, La Vignera S, et al. Poly (ADP-ribose) polymerase 1 protein expression in normal and neoplastic prostatic tissue. Eur J Histochem. 2013;57:80–2.CrossRef Salemi M, Galia A, Fraggetta F, La Corte C, Pepe P, La Vignera S, et al. Poly (ADP-ribose) polymerase 1 protein expression in normal and neoplastic prostatic tissue. Eur J Histochem. 2013;57:80–2.CrossRef
38.
go back to reference Martí JM, Fernández-Cortés M, Serrano-Sáenz S, Zamudio-Martinez E, Delgado-Bellido D, Garcia-Diaz A, et al. The multifactorial role of PARP-1 in tumor microenvironment. Cancers (Basel). 2020;12(3):739.PubMedCentralCrossRef Martí JM, Fernández-Cortés M, Serrano-Sáenz S, Zamudio-Martinez E, Delgado-Bellido D, Garcia-Diaz A, et al. The multifactorial role of PARP-1 in tumor microenvironment. Cancers (Basel). 2020;12(3):739.PubMedCentralCrossRef
39.
go back to reference Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, et al. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 2005;65:11597–604.PubMedCrossRef Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, et al. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 2005;65:11597–604.PubMedCrossRef
40.
go back to reference Ming L, Byrne NM, Camac SN, Mitchell CA, Ward C, Waugh DJ, et al. Androgen deprivation results in time-dependent hypoxia in LNCaP prostate tumours: Informed scheduling of the bioreductive drug AQ4N improves treatment response. Int J Cancer. 2013;132:1323–32.PubMedCrossRef Ming L, Byrne NM, Camac SN, Mitchell CA, Ward C, Waugh DJ, et al. Androgen deprivation results in time-dependent hypoxia in LNCaP prostate tumours: Informed scheduling of the bioreductive drug AQ4N improves treatment response. Int J Cancer. 2013;132:1323–32.PubMedCrossRef
41.
go back to reference Stewart GD, Ross JA, McLaren DB, Parker CC, Habib FK, Riddick ACP. The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int. 2010;105:8–13.PubMedCrossRef Stewart GD, Ross JA, McLaren DB, Parker CC, Habib FK, Riddick ACP. The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int. 2010;105:8–13.PubMedCrossRef
42.
go back to reference Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.PubMedCrossRef Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337–51.PubMedCrossRef
43.
go back to reference Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, et al. Mechanistic rationale for inhibition of Poly(ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78.PubMedPubMedCentralCrossRef Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, et al. Mechanistic rationale for inhibition of Poly(ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78.PubMedPubMedCentralCrossRef
44.
go back to reference Testa U, Castelli G, Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: therapeutic implications. Medicines. 2019;6:82.PubMedCentralCrossRef Testa U, Castelli G, Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: therapeutic implications. Medicines. 2019;6:82.PubMedCentralCrossRef
45.
go back to reference Abdel-Hady A, El-Hindawi A, Hammam O, Khalil H, Diab S, El-Aziz SA, et al. Expression of ERG protein and TMRPSS2-ERG fusion in prostatic carcinoma in egyptian patients. Open access Maced J Med Sci. 2017;5:147–54.PubMedPubMedCentralCrossRef Abdel-Hady A, El-Hindawi A, Hammam O, Khalil H, Diab S, El-Aziz SA, et al. Expression of ERG protein and TMRPSS2-ERG fusion in prostatic carcinoma in egyptian patients. Open access Maced J Med Sci. 2017;5:147–54.PubMedPubMedCentralCrossRef
46.
go back to reference Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2014;32:904–12.PubMedPubMedCentralCrossRef Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2014;32:904–12.PubMedPubMedCentralCrossRef
47.
go back to reference Lahdensuo K, Erickson A, Saarinen I, Seikkula H, Lundin J, Lundin M, et al. Loss of PTEN expression in ERG-negative prostate cancer predicts secondary therapies and leads to shorter disease-specific survival time after radical prostatectomy. Mod Pathol. 2016;29:1565–74.PubMedCrossRef Lahdensuo K, Erickson A, Saarinen I, Seikkula H, Lundin J, Lundin M, et al. Loss of PTEN expression in ERG-negative prostate cancer predicts secondary therapies and leads to shorter disease-specific survival time after radical prostatectomy. Mod Pathol. 2016;29:1565–74.PubMedCrossRef
48.
go back to reference Baumgartner E, del Pena CRM, Eich ML, Porter KK, Nix JW, Rais-Bahrami S, et al. PTEN and ERG detection in multiparametric magnetic resonance imaging/ultrasound fusion targeted prostate biopsy compared to systematic biopsy. Hum Pathol. 2019;90:20–6.PubMedCrossRefPubMedCentral Baumgartner E, del Pena CRM, Eich ML, Porter KK, Nix JW, Rais-Bahrami S, et al. PTEN and ERG detection in multiparametric magnetic resonance imaging/ultrasound fusion targeted prostate biopsy compared to systematic biopsy. Hum Pathol. 2019;90:20–6.PubMedCrossRefPubMedCentral
49.
go back to reference Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One. 2013;8:e60408.PubMedPubMedCentralCrossRef Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One. 2013;8:e60408.PubMedPubMedCentralCrossRef
50.
go back to reference Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375:443–53.PubMedPubMedCentralCrossRef Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375:443–53.PubMedPubMedCentralCrossRef
51.
go back to reference Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S, et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol. 2017;71:740–7.PubMedCrossRef Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S, et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol. 2017;71:740–7.PubMedCrossRef
52.
go back to reference Nicolosi P, Ledet E, Yang S, Michalski S, Freschi B, O’Leary E, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5:523–8.PubMedPubMedCentralCrossRef Nicolosi P, Ledet E, Yang S, Michalski S, Freschi B, O’Leary E, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5:523–8.PubMedPubMedCentralCrossRef
53.
go back to reference Reaper PM, Griffiths MR, Long JM, Charrier JD, MacCormick S, Charlton PA, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7:428–30.PubMedCrossRef Reaper PM, Griffiths MR, Long JM, Charrier JD, MacCormick S, Charlton PA, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7:428–30.PubMedCrossRef
54.
go back to reference Landau HJ, McNeely SC, Nair JS, Comenzo RL, Asai T, Friedman H, et al. The checkpoint kinase inhibitor AZD7762 potentiates chemotherapy-induced apoptosis of p53-mutated multiple myeloma cells. Mol Cancer Ther. 2012;11:1781–8.PubMedCrossRef Landau HJ, McNeely SC, Nair JS, Comenzo RL, Asai T, Friedman H, et al. The checkpoint kinase inhibitor AZD7762 potentiates chemotherapy-induced apoptosis of p53-mutated multiple myeloma cells. Mol Cancer Ther. 2012;11:1781–8.PubMedCrossRef
55.
go back to reference Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.CrossRef Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.CrossRef
56.
go back to reference Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(758–769):e9. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(758–769):e9.
57.
go back to reference Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106:1697–701.PubMedPubMedCentralCrossRef Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106:1697–701.PubMedPubMedCentralCrossRef
58.
go back to reference Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, et al. Prostate cancer risks for male BRCA1[Formula presented] and BRCA2 mutation carriers: a prospective cohort study. Eur Urol. 2020;77:24–35.PubMedPubMedCentralCrossRef Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, et al. Prostate cancer risks for male BRCA1[Formula presented] and BRCA2 mutation carriers: a prospective cohort study. Eur Urol. 2020;77:24–35.PubMedPubMedCentralCrossRef
59.
go back to reference Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105:1230–4.PubMedPubMedCentralCrossRef Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105:1230–4.PubMedPubMedCentralCrossRef
60.
go back to reference Xu J, Labbate CV, Isaacs WB, Helfand BT. Inherited risk assessment of prostate cancer: it takes three to do it right. Prostate Cancer Prostatic Dis. 2020;66:59–61.CrossRef Xu J, Labbate CV, Isaacs WB, Helfand BT. Inherited risk assessment of prostate cancer: it takes three to do it right. Prostate Cancer Prostatic Dis. 2020;66:59–61.CrossRef
61.
go back to reference Page EC, Bancroft EK, Brook MN, Assel M, Al Battat HM, Thomas S, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers. Eur Urol. 2019;76:831–42.PubMedPubMedCentralCrossRef Page EC, Bancroft EK, Brook MN, Assel M, Al Battat HM, Thomas S, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers. Eur Urol. 2019;76:831–42.PubMedPubMedCentralCrossRef
62.
go back to reference Isaacsson Velho P, Antonarakis ES. PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol. 2018;11:475–86.PubMedCrossRef Isaacsson Velho P, Antonarakis ES. PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol. 2018;11:475–86.PubMedCrossRef
63.
go back to reference Sztupinszki Z, Diossy M, Krzystanek M, Borcsok J, Pomerantz MM, Tisza V, et al. Detection of molecular signatures of homologous recombination deficiency in prostate cancer with or without BRCA1/2 mutations. Clin Cancer Res. 2020;26:2673–80.PubMedCrossRefPubMedCentral Sztupinszki Z, Diossy M, Krzystanek M, Borcsok J, Pomerantz MM, Tisza V, et al. Detection of molecular signatures of homologous recombination deficiency in prostate cancer with or without BRCA1/2 mutations. Clin Cancer Res. 2020;26:2673–80.PubMedCrossRefPubMedCentral
64.
go back to reference Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating ‘BRCAness’. Trends Cell Biol. 2019;29:740–51.PubMedCrossRef Byrum AK, Vindigni A, Mosammaparast N. Defining and modulating ‘BRCAness’. Trends Cell Biol. 2019;29:740–51.PubMedCrossRef
65.
go back to reference Abida W, Campbell D, Patnaik A, Shapiro JD, Sautois B, Vogelzang NJ, et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res. 2020;26:2487–96.PubMedCrossRefPubMedCentral Abida W, Campbell D, Patnaik A, Shapiro JD, Sautois B, Vogelzang NJ, et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res. 2020;26:2487–96.PubMedCrossRefPubMedCentral
67.
go back to reference Schaeffer E, Srinivas S, Antonarakis ES, Armstrong AJ, Bekelman JE, Cheng H, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Prostate Cancer. Version 2. 2020. Schaeffer E, Srinivas S, Antonarakis ES, Armstrong AJ, Bekelman JE, Cheng H, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Prostate Cancer. Version 2. 2020.
68.
go back to reference Dall’Era MA, McPherson JD, Gao AC, DeVere White RW, Gregg JP, Lara PN. Germline and somatic DNA repair gene alterations in prostate cancer. Cancer. 2020;126:2980–5.PubMedCrossRef Dall’Era MA, McPherson JD, Gao AC, DeVere White RW, Gregg JP, Lara PN. Germline and somatic DNA repair gene alterations in prostate cancer. Cancer. 2020;126:2980–5.PubMedCrossRef
69.
go back to reference Horak P, Weischenfeldt J, Von Amsberg G, Beyer B, Schütte A, Uhrig S, et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. 2019;5:a003657.PubMedPubMedCentralCrossRef Horak P, Weischenfeldt J, Von Amsberg G, Beyer B, Schütte A, Uhrig S, et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. 2019;5:a003657.PubMedPubMedCentralCrossRef
70.
go back to reference Dutt SS, Gao AC. Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol. 2009;5:1403–13.PubMedCrossRef Dutt SS, Gao AC. Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol. 2009;5:1403–13.PubMedCrossRef
71.
go back to reference Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–66.PubMedPubMedCentralCrossRef Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–66.PubMedPubMedCentralCrossRef
72.
go back to reference Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27.PubMedPubMedCentralCrossRef Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27.PubMedPubMedCentralCrossRef
73.
go back to reference Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.PubMedCrossRef Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.PubMedCrossRef
74.
go back to reference Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.PubMedCrossRef Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.PubMedCrossRef
75.
go back to reference Mateo J, Porta N, Bianchini D, McGovern U, Elliott T, Jones R, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21:162–74.PubMedPubMedCentralCrossRef Mateo J, Porta N, Bianchini D, McGovern U, Elliott T, Jones R, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21:162–74.PubMedPubMedCentralCrossRef
76.
go back to reference De Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091–102.PubMedCrossRef De Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091–102.PubMedCrossRef
77.
go back to reference James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to fi rst-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.PubMedPubMedCentralCrossRef James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to fi rst-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.PubMedPubMedCentralCrossRef
78.
go back to reference Xu L, Ma E, Zeng T, Zhao R, Tao Y, Chen X, et al. ATM deficiency promotes progression of CRPC by enhancing Warburg effect. Endocr Relat Cancer. 2019;26:59–71.PubMedPubMedCentralCrossRef Xu L, Ma E, Zeng T, Zhao R, Tao Y, Chen X, et al. ATM deficiency promotes progression of CRPC by enhancing Warburg effect. Endocr Relat Cancer. 2019;26:59–71.PubMedPubMedCentralCrossRef
79.
go back to reference Smith MR, Sandhu SK, Kelly WK, Scher HI, Efstathiou E, Lara P, et al. Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): Preliminary results of GALAHAD. J Clin Oncol. 2019;37:202–202.CrossRef Smith MR, Sandhu SK, Kelly WK, Scher HI, Efstathiou E, Lara P, et al. Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): Preliminary results of GALAHAD. J Clin Oncol. 2019;37:202–202.CrossRef
80.
go back to reference De Bono JS, Mehra N, Higano CS, Saad F, Buttigliero C, Mata M, et al. TALAPRO-1: A phase II study of talazoparib (TALA) in men with DNA damage repair mutations (DDRmut) and metastatic castration-resistant prostate cancer (mCRPC)—first interim analysis (IA). J Clin Oncol. 2020;38:119–119.CrossRef De Bono JS, Mehra N, Higano CS, Saad F, Buttigliero C, Mata M, et al. TALAPRO-1: A phase II study of talazoparib (TALA) in men with DNA damage repair mutations (DDRmut) and metastatic castration-resistant prostate cancer (mCRPC)—first interim analysis (IA). J Clin Oncol. 2020;38:119–119.CrossRef
81.
go back to reference Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.PubMedCrossRef Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.PubMedCrossRef
82.
go back to reference Palma JP, Wang YC, Rodriguez LE, Montgomery D, Ellis PA, Bukofzer G, et al. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res. 2009;15:7277–90.PubMedCrossRef Palma JP, Wang YC, Rodriguez LE, Montgomery D, Ellis PA, Bukofzer G, et al. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res. 2009;15:7277–90.PubMedCrossRef
83.
go back to reference Van der Weele DJ, Paner GP, Fleming GF, Szmulewitz RZ. Sustained complete response to cytotoxic therapy and the PARP inhibitor veliparib in metastatic castration-resistant prostate cancer—a case report. Front Oncol. 2015;5:169. Van der Weele DJ, Paner GP, Fleming GF, Szmulewitz RZ. Sustained complete response to cytotoxic therapy and the PARP inhibitor veliparib in metastatic castration-resistant prostate cancer—a case report. Front Oncol. 2015;5:169.
84.
go back to reference Hussain M, Daignault-Newton S, Twardowski PW, Albany C, Stein MN, Kunju LP, et al. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: Results from NCI 9012. J Clin Oncol. 2018;36:991–9.PubMedCrossRef Hussain M, Daignault-Newton S, Twardowski PW, Albany C, Stein MN, Kunju LP, et al. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: Results from NCI 9012. J Clin Oncol. 2018;36:991–9.PubMedCrossRef
85.
go back to reference Reddy V, Wu M, Ciavattone N, McKenty N, Menon M, Barrack ER, et al. ATM inhibition potentiates death of androgen receptor-inactivated prostate cancer cells with telomere dysfunction. J Biol Chem. 2015;290:25522–33.PubMedPubMedCentralCrossRef Reddy V, Wu M, Ciavattone N, McKenty N, Menon M, Barrack ER, et al. ATM inhibition potentiates death of androgen receptor-inactivated prostate cancer cells with telomere dysfunction. J Biol Chem. 2015;290:25522–33.PubMedPubMedCentralCrossRef
86.
go back to reference Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I, et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19:975–86.PubMedCrossRef Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I, et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19:975–86.PubMedCrossRef
87.
go back to reference Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10:eaam7479.PubMedPubMedCentralCrossRef Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10:eaam7479.PubMedPubMedCentralCrossRef
88.
go back to reference Yu EY, Massard C, Retz M, Tafreshi A, Carles Galceran J, Hammerer P, et al. Keynote-365 cohort a: Pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37:145–145.CrossRef Yu EY, Massard C, Retz M, Tafreshi A, Carles Galceran J, Hammerer P, et al. Keynote-365 cohort a: Pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37:145–145.CrossRef
89.
go back to reference Steinberger AE, Cotogno P, Ledet EM, Lewis B, Sartor O. Exceptional duration of radium-223 in prostate cancer with a BRCA2 mutation. Clin Genitourin Cancer. 2017;15:e69–71.PubMedCrossRef Steinberger AE, Cotogno P, Ledet EM, Lewis B, Sartor O. Exceptional duration of radium-223 in prostate cancer with a BRCA2 mutation. Clin Genitourin Cancer. 2017;15:e69–71.PubMedCrossRef
91.
go back to reference Sari M, Saip P. Myelodysplastic syndrome after olaparib treatment in heavily pretreated ovarian carcinoma. Am J Ther. 2019;26:e632–e633633.PubMedCrossRef Sari M, Saip P. Myelodysplastic syndrome after olaparib treatment in heavily pretreated ovarian carcinoma. Am J Ther. 2019;26:e632–e633633.PubMedCrossRef
92.
go back to reference Nitecki R, Gockley AA, Floyd JL, Coleman RL, Melamed A, Rauh-Hain JA. The incidence of myelodysplastic syndrome in patients receiving poly-ADP ribose polymerase inhibitors for treatment of solid tumors: a meta-analysis. J Clin Oncol. 2020;38:3641–3641.CrossRef Nitecki R, Gockley AA, Floyd JL, Coleman RL, Melamed A, Rauh-Hain JA. The incidence of myelodysplastic syndrome in patients receiving poly-ADP ribose polymerase inhibitors for treatment of solid tumors: a meta-analysis. J Clin Oncol. 2020;38:3641–3641.CrossRef
93.
go back to reference Mohyuddin GR, Aziz M, Britt A, Wade L, Sun W, Baranda J, et al. Similar response rates and survival with PARP inhibitors for patients with solid tumors harboring somatic versus Germline BRCA mutations: a meta-analysis and systematic review. BMC Cancer. 2020;20:507.PubMedPubMedCentralCrossRef Mohyuddin GR, Aziz M, Britt A, Wade L, Sun W, Baranda J, et al. Similar response rates and survival with PARP inhibitors for patients with solid tumors harboring somatic versus Germline BRCA mutations: a meta-analysis and systematic review. BMC Cancer. 2020;20:507.PubMedPubMedCentralCrossRef
94.
go back to reference Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol. 2020;10:570.PubMedPubMedCentralCrossRef Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol. 2020;10:570.PubMedPubMedCentralCrossRef
95.
go back to reference Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019. JNCCN J Natl Compr Cancer Netw. 2019;17:479–505.CrossRef Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019. JNCCN J Natl Compr Cancer Netw. 2019;17:479–505.CrossRef
96.
go back to reference Julka PK, Verma A, Gupta K. Personalized treatment approach to metastatic castration-resistant prostate cancer with BRCA2 and PTEN mutations: a case report. Case Rep Oncol. 2020;13:55–61.PubMedPubMedCentralCrossRef Julka PK, Verma A, Gupta K. Personalized treatment approach to metastatic castration-resistant prostate cancer with BRCA2 and PTEN mutations: a case report. Case Rep Oncol. 2020;13:55–61.PubMedPubMedCentralCrossRef
Metadata
Title
Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data
Authors
Dawid Sigorski
Ewa Iżycka-Świeszewska
Lubomir Bodnar
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 6/2020
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-020-00756-4

Other articles of this Issue 6/2020

Targeted Oncology 6/2020 Go to the issue

Acknowledgement to Referees

Acknowledgement to Referees

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine