Skip to main content
Top
Published in: Targeted Oncology 3/2016

01-06-2016 | Original Research Article

Rare RAS Mutations in Metastatic Colorectal Cancer Detected During Routine RAS Genotyping Using Next Generation Sequencing

Authors: Alexandre Harlé, Pierre Filhine-Tresarrieu, Marie Husson, Romain Boidot, Marie Rouyer, Cindy Dubois, Agnès Leroux, Jean-Louis Merlin

Published in: Targeted Oncology | Issue 3/2016

Login to get access

Abstract

Background

Overall survival of metastatic colorectal cancer (mCRC) patients has been improved with the addition of targeted therapy such as anti-epithelial growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to standard chemotherapy. Retrospective studies and randomized trials showed that the presence of RAS mutations was linked to the absence of clinical response to anti-EGFR mAbs. Patients harboring KRAS and NRAS mutations on exons 2, 3 or 4 have little or no benefit from anti-EGFR therapies. Polymerase chain reaction (PCR)-based assays are routinely used to assess KRAS and NRAS status, whereas deep sequencing with next generation sequencing (NGS) currently represents an alternative method.

Objective

The objective of our study was to identify KRAS and NRAS non-hotspot mutations using NGS of mCRC tumor samples.

Method

DNA was extracted from 188 consecutive formalin-fixed paraffin embedded samples of histologically proven colorectal cancer tumor tissue from patients with mCRC. Following amplification, DNA was sequenced by ultra-deep pyrosequencing. Non-hotspot mutations identified by NGS (frequency of mutated allele range [1.8–70.6 %]) were confirmed by Sanger direct-sequencing when possible.

Results

NGS procedure was applicable in 94 % of the cases and detected mutations in 62 % of the samples. Nine uncommon mutational profiles were found with a frequency of mutated allele  > 1 %. Silent mutations were found in 3.6 % of the samples. Mutations at or near functional domains of RAS proteins, other than defined hotspots, were found in 3.6 %. NGS proved to be accurate, sensitive and suitable for routine RAS genotyping.

Conclusion

Clinical responses to anti-EGFR mAbs are potentially impaired in the presence of these uncommon RAS mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefPubMed
3.
go back to reference Leufkens AM, van den Bosch MA, van Leeuwen MS, Siersema PD (2011) Diagnostic accuracy of computed tomography for colon cancer staging: a systematic review. Scand J Gastroenterol 46(7-8):887–894CrossRefPubMed Leufkens AM, van den Bosch MA, van Leeuwen MS, Siersema PD (2011) Diagnostic accuracy of computed tomography for colon cancer staging: a systematic review. Scand J Gastroenterol 46(7-8):887–894CrossRefPubMed
5.
go back to reference Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295–308CrossRefPubMed Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295–308CrossRefPubMed
6.
go back to reference Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394(6691):337–343CrossRefPubMed Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394(6691):337–343CrossRefPubMed
7.
go back to reference Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877CrossRefPubMed Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877CrossRefPubMed
8.
go back to reference Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304CrossRefPubMed Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304CrossRefPubMed
9.
go back to reference Wittinghofer A, Waldmann H (2000) Ras—a molecular switch involved in tumor formation. Angew Chem Int Ed 39(23):4192–4214CrossRef Wittinghofer A, Waldmann H (2000) Ras—a molecular switch involved in tumor formation. Angew Chem Int Ed 39(23):4192–4214CrossRef
10.
go back to reference Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277(5324):333–338CrossRefPubMed Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277(5324):333–338CrossRefPubMed
11.
go back to reference Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846CrossRefPubMed Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846CrossRefPubMed
12.
go back to reference Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545CrossRefPubMed Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545CrossRefPubMed
13.
go back to reference Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634CrossRefPubMed Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634CrossRefPubMed
14.
go back to reference Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995CrossRefPubMed Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995CrossRefPubMed
15.
go back to reference Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034CrossRefPubMed Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034CrossRefPubMed
16.
go back to reference Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972CrossRefPubMed Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972CrossRefPubMed
17.
go back to reference Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE (2010) Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 16(3):790–799CrossRefPubMed Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE (2010) Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 16(3):790–799CrossRefPubMed
18.
go back to reference Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540PubMedPubMedCentral Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540PubMedPubMedCentral
19.
go back to reference Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536PubMedPubMedCentral Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536PubMedPubMedCentral
20.
go back to reference Laurent-Puig P, Pekin D, Normand C, Kotsopoulos SK, Nizard P, Perez-Toralla K et al (2015) Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin Cancer Res 21(5):1087–1097CrossRefPubMed Laurent-Puig P, Pekin D, Normand C, Kotsopoulos SK, Nizard P, Perez-Toralla K et al (2015) Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin Cancer Res 21(5):1087–1097CrossRefPubMed
24.
go back to reference Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55, 29-32 CrossRefPubMed Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55, 29-32 CrossRefPubMed
25.
go back to reference Der CJ, Finkel T, Cooper GM (1986) Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44(1):167–176CrossRefPubMed Der CJ, Finkel T, Cooper GM (1986) Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44(1):167–176CrossRefPubMed
26.
go back to reference Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G et al (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38(3):331–336CrossRefPubMed Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G et al (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38(3):331–336CrossRefPubMed
27.
go back to reference Schubbert S, Bollag G, Lyubynska N, Nguyen H, Kratz CP, Zenker M et al (2007) Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol 27(22):7765–7770CrossRefPubMedPubMedCentral Schubbert S, Bollag G, Lyubynska N, Nguyen H, Kratz CP, Zenker M et al (2007) Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol 27(22):7765–7770CrossRefPubMedPubMedCentral
28.
go back to reference The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337CrossRefPubMedCentral The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337CrossRefPubMedCentral
29.
go back to reference Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345CrossRefPubMed Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345CrossRefPubMed
30.
go back to reference Sigal IS, Gibbs JB, D’Alonzo JS, Scolnick EM (1986) Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc Natl Acad Sci U S A 83(13):4725–4729CrossRefPubMedPubMedCentral Sigal IS, Gibbs JB, D’Alonzo JS, Scolnick EM (1986) Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc Natl Acad Sci U S A 83(13):4725–4729CrossRefPubMedPubMedCentral
31.
go back to reference Proud CG (1986) Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem Sci 11(2):73–77CrossRef Proud CG (1986) Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem Sci 11(2):73–77CrossRef
Metadata
Title
Rare RAS Mutations in Metastatic Colorectal Cancer Detected During Routine RAS Genotyping Using Next Generation Sequencing
Authors
Alexandre Harlé
Pierre Filhine-Tresarrieu
Marie Husson
Romain Boidot
Marie Rouyer
Cindy Dubois
Agnès Leroux
Jean-Louis Merlin
Publication date
01-06-2016
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 3/2016
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-015-0404-7

Other articles of this Issue 3/2016

Targeted Oncology 3/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine