Skip to main content
Top
Published in: Targeted Oncology 2/2016

01-04-2016 | Original Research Article

Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy

Authors: Daniela Laura Papademetrio, Silvina Laura Lompardía, Tania Simunovich, Susana Costantino, Cintia Yamila Mihalez, Victoria Cavaliere, Élida Álvarez

Published in: Targeted Oncology | Issue 2/2016

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a survival rate of 4–6 months from diagnosis. PDAC is the fourth leading cause of cancer-related death in the Western world, with a mortality rate of 10 cases per 100,000 population. Chemotherapy constitutes only a palliative strategy, with limited effects on life expectancy.

Aims

To investigate the biological response of PDAC to mitogen-activated protein kinase (MAPK) and NF-kappaB (NF-kB) inhibitors and the role of autophagy in the modulation of these signaling pathways in order to address the challenge of developing improved medical protocols for patients with PDAC.

Methods

Two ATCC cell lines, MIAPaCa-2 and PANC-1, were used as PDAC models. Cells were exposed to inhibitors of MAPK or NF-kB survival pathways alone or after autophagy inhibition. Several aspects were analyzed, as follows: cell proliferation, by [3H]TdR incorporation; cell death, by TUNEL assay, regulation of autophagy by LC3-II expression level and modulation of pro-and anti-apoptotic proteins by Western blot.

Results

We demonstrated that the inhibition of the MAPK and NF-kB survival pathways with U0126 and caffeic acid phenethyl ester (CAPE), respectively, produced strong inhibition of pancreatic tumor cell growth without inducing apoptotic death. Interestingly, U0126 and CAPE induced apoptosis after autophagy inhibition in a caspase-dependent manner in MIA PaCa-2 cells and in a caspase-independent manner in PANC-1 cells.

Conclusions

Here we present evidence that allows us to consider a combined therapy regimen comprising an autophagy inhibitor and a MAPK or NF-kB pathway inhibitor as a possible treatment strategy for pancreatic cancer.
https://static-content.springer.com/image/art%3A10.1007%2Fs11523-015-0388-3/MediaObjects/11523_2015_388_Figa_HTML.gif
Literature
2.
go back to reference Hidalgo M (2012) New insights into pancreatic cancer biology. Ann Oncol 23(Suppl 10):135–8CrossRef Hidalgo M (2012) New insights into pancreatic cancer biology. Ann Oncol 23(Suppl 10):135–8CrossRef
4.
5.
go back to reference Garcia MG, Alaniz LD, Cordo Russo RI et al (2009) PI3K/Akt inhibition modulates multidrug resistance and activates NFkB in murine Lymphoma cell lines. Leuk Res 33:288–96CrossRefPubMed Garcia MG, Alaniz LD, Cordo Russo RI et al (2009) PI3K/Akt inhibition modulates multidrug resistance and activates NFkB in murine Lymphoma cell lines. Leuk Res 33:288–96CrossRefPubMed
6.
go back to reference Cox AD, Der CJ (1997) Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1333(1):F51–71PubMed Cox AD, Der CJ (1997) Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1333(1):F51–71PubMed
7.
go back to reference Muerkoster S, Arlt A, Sipos B et al (2005) Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65(4):1316–24CrossRefPubMed Muerkoster S, Arlt A, Sipos B et al (2005) Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 65(4):1316–24CrossRefPubMed
8.
go back to reference Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–46CrossRefPubMed Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–46CrossRefPubMed
9.
go back to reference De Luca A, Maiello MR, D'Alessio A et al (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–27CrossRefPubMed De Luca A, Maiello MR, D'Alessio A et al (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–27CrossRefPubMed
10.
go back to reference Shimizu T, Tolcher AW, Papadopoulos KP et al (2012) The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 18:2316–25CrossRefPubMed Shimizu T, Tolcher AW, Papadopoulos KP et al (2012) The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 18:2316–25CrossRefPubMed
11.
go back to reference Wang LH (2014) LiY, Yang SN, et al. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer 110(2):34–52CrossRef Wang LH (2014) LiY, Yang SN, et al. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer 110(2):34–52CrossRef
12.
go back to reference Sylvester RJ, van der Meijden AP, Oosterlinck W et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–75CrossRefPubMed Sylvester RJ, van der Meijden AP, Oosterlinck W et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–75CrossRefPubMed
13.
go back to reference Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 304:499–504CrossRefPubMed Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 304:499–504CrossRefPubMed
14.
go back to reference Wei Y, Fan T, Yu M (2008) Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin (Shanghai) 40:278–88CrossRef Wei Y, Fan T, Yu M (2008) Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin (Shanghai) 40:278–88CrossRef
16.
go back to reference Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–46CrossRefPubMed Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–46CrossRefPubMed
17.
go back to reference LaCasse EC, Mahoney DJ, Cheung HH et al (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–75CrossRefPubMed LaCasse EC, Mahoney DJ, Cheung HH et al (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–75CrossRefPubMed
18.
go back to reference Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13:5995–6000CrossRefPubMed Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13:5995–6000CrossRefPubMed
21.
go back to reference Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2(4):301–14CrossRefPubMed Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2(4):301–14CrossRefPubMed
22.
go back to reference Ogawa M, Yoshimori T, Suzuki T et al (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–31CrossRefPubMed Ogawa M, Yoshimori T, Suzuki T et al (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–31CrossRefPubMed
23.
go back to reference Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–9CrossRefPubMed Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–9CrossRefPubMed
24.
go back to reference Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–4CrossRefPubMed Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–4CrossRefPubMed
25.
go back to reference Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–6CrossRefPubMed Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–6CrossRefPubMed
26.
go back to reference Liang XH, Yu J, Brown K et al (2001) Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 61(8):3443–9PubMed Liang XH, Yu J, Brown K et al (2001) Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 61(8):3443–9PubMed
27.
go back to reference Ravikumar B, Berger Z, Vacher C et al (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–16CrossRefPubMed Ravikumar B, Berger Z, Vacher C et al (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–16CrossRefPubMed
28.
go back to reference Papademetrio DL, Cavaliere V, Simunovich T et al (2014) Interplay between autophagy and apoptosis in pancreatic tumors in response to gemcitabine. Target Oncol 9(2):123–34CrossRefPubMed Papademetrio DL, Cavaliere V, Simunovich T et al (2014) Interplay between autophagy and apoptosis in pancreatic tumors in response to gemcitabine. Target Oncol 9(2):123–34CrossRefPubMed
29.
go back to reference Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–8CrossRefPubMedPubMedCentral Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–8CrossRefPubMedPubMedCentral
30.
go back to reference Rubinsztein DC, Cuervo AM, Ravikumar B et al (2009) In search of an "autophagomometer". Autophagy 5(5):585–9CrossRefPubMed Rubinsztein DC, Cuervo AM, Ravikumar B et al (2009) In search of an "autophagomometer". Autophagy 5(5):585–9CrossRefPubMed
31.
go back to reference Conroy T, Desseigne F, Ychou M et al (2001) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–25CrossRef Conroy T, Desseigne F, Ychou M et al (2001) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–25CrossRef
32.
go back to reference Hill R, Rabb M, Madureira PA et al (2013) Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis 4:e791CrossRefPubMedPubMedCentral Hill R, Rabb M, Madureira PA et al (2013) Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis 4:e791CrossRefPubMedPubMedCentral
33.
go back to reference Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–6CrossRefPubMedPubMedCentral Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–6CrossRefPubMedPubMedCentral
34.
36.
go back to reference Chen Z, Cheng K, Walton Z et al (2012) A murine lung cancer coclinical trial identifies genetic modifiers of therapeutic response. Nature 483(7391):613–7CrossRefPubMedPubMedCentral Chen Z, Cheng K, Walton Z et al (2012) A murine lung cancer coclinical trial identifies genetic modifiers of therapeutic response. Nature 483(7391):613–7CrossRefPubMedPubMedCentral
37.
go back to reference Jänne PA, Shaw AT, Pereira JR et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47CrossRefPubMed Jänne PA, Shaw AT, Pereira JR et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47CrossRefPubMed
38.
go back to reference McCubrey JA, Steelman LS, Chappell WH et al (2012) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3:1068–111CrossRefPubMedPubMedCentral McCubrey JA, Steelman LS, Chappell WH et al (2012) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3:1068–111CrossRefPubMedPubMedCentral
39.
go back to reference Fujioka S, Sclabas GM, Schmidt C et al (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–54PubMed Fujioka S, Sclabas GM, Schmidt C et al (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–54PubMed
40.
go back to reference Hu L, Shi Y, Hsu JH et al (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101:3126–35CrossRefPubMed Hu L, Shi Y, Hsu JH et al (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101:3126–35CrossRefPubMed
41.
go back to reference Mayo MW, Wang CY, Cogswell PC et al (1997) Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–5CrossRefPubMed Mayo MW, Wang CY, Cogswell PC et al (1997) Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–5CrossRefPubMed
42.
go back to reference Li L, Aggarwal BB, Shishodia S et al (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101:2351–62CrossRefPubMed Li L, Aggarwal BB, Shishodia S et al (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101:2351–62CrossRefPubMed
44.
go back to reference Yamamoto Y, Gaynor RB (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med 1:287–96CrossRefPubMed Yamamoto Y, Gaynor RB (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med 1:287–96CrossRefPubMed
45.
go back to reference Aggarwal BB, Takada Y, Shishodia S et al (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–53PubMed Aggarwal BB, Takada Y, Shishodia S et al (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–53PubMed
46.
go back to reference Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–10CrossRefPubMed Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–10CrossRefPubMed
47.
go back to reference Garg A, Aggarwal BB (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16:1053–68CrossRefPubMed Garg A, Aggarwal BB (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 16:1053–68CrossRefPubMed
48.
49.
go back to reference Cai X, Lu W, Yang Y et al (2013) Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PLoS One 8(10):e77126CrossRefPubMedPubMedCentral Cai X, Lu W, Yang Y et al (2013) Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PLoS One 8(10):e77126CrossRefPubMedPubMedCentral
50.
go back to reference Cavaliere V, Papademetrio DL, Lorenzetti M et al (2009) Caffeic Acid Phenylethyl Ester and MG-132 have apoptotic and antiproliferative effects on Leukemic cells but not on normal mononuclear cells. Transl Oncol 2(1):46–58CrossRefPubMedPubMedCentral Cavaliere V, Papademetrio DL, Lorenzetti M et al (2009) Caffeic Acid Phenylethyl Ester and MG-132 have apoptotic and antiproliferative effects on Leukemic cells but not on normal mononuclear cells. Transl Oncol 2(1):46–58CrossRefPubMedPubMedCentral
51.
go back to reference Velculescu VE (1999) Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes SAGE and its use in global gene expression analysis. Science 286(5444):1491–2CrossRefPubMed Velculescu VE (1999) Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes SAGE and its use in global gene expression analysis. Science 286(5444):1491–2CrossRefPubMed
52.
go back to reference Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70CrossRefPubMed Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70CrossRefPubMed
53.
go back to reference Sarela AI, Macadam RC, Farmery SM et al (2000) Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46(5):645–50CrossRefPubMedPubMedCentral Sarela AI, Macadam RC, Farmery SM et al (2000) Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46(5):645–50CrossRefPubMedPubMedCentral
54.
go back to reference Monzo M, Rosell R, Felip E et al (1999) A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clin Oncol 17(7):2100–4PubMed Monzo M, Rosell R, Felip E et al (1999) A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clin Oncol 17(7):2100–4PubMed
55.
go back to reference Shariat SF, Lotan Y, Saboorian H et al (2004) Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100(4):751–7CrossRefPubMed Shariat SF, Lotan Y, Saboorian H et al (2004) Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100(4):751–7CrossRefPubMed
56.
go back to reference Tanaka K, Iwamoto S, Gon G et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Can 6(1):127–34 Tanaka K, Iwamoto S, Gon G et al (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Can 6(1):127–34
57.
go back to reference Jourdan M, Reme T, Goldschmidt H et al (2009) Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 145(1):45–58CrossRefPubMedPubMedCentral Jourdan M, Reme T, Goldschmidt H et al (2009) Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 145(1):45–58CrossRefPubMedPubMedCentral
58.
go back to reference Cheng SM, Chang YC, Liu CY et al (2015) YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol 172(1):214–34CrossRefPubMed Cheng SM, Chang YC, Liu CY et al (2015) YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol 172(1):214–34CrossRefPubMed
59.
go back to reference Wang J, Whiteman MW, Lian H et al (2009) A Non-canonical MEK/ERK Signaling Pathway Regulates Autophagy via Regulating Beclin 1. J Biol Chem 284(32):21412–24CrossRefPubMedPubMedCentral Wang J, Whiteman MW, Lian H et al (2009) A Non-canonical MEK/ERK Signaling Pathway Regulates Autophagy via Regulating Beclin 1. J Biol Chem 284(32):21412–24CrossRefPubMedPubMedCentral
60.
go back to reference Pattingre S, Bauvy C, Codogno PZ (2003) Amino acids interfere with the ERK1⁄ 2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–74CrossRefPubMed Pattingre S, Bauvy C, Codogno PZ (2003) Amino acids interfere with the ERK1⁄ 2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–74CrossRefPubMed
61.
go back to reference Ellington AA, Berhow MA, Singletary KW (2006) Inhibition of Akt signaling and enhanced ERK1⁄ 2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306CrossRefPubMed Ellington AA, Berhow MA, Singletary KW (2006) Inhibition of Akt signaling and enhanced ERK1⁄ 2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306CrossRefPubMed
62.
go back to reference Copetti T, Demarchi F, Schneider C (2009) p65/RelA binds and activates the beclin 1 promoter. Autophagy 5(6):858–9CrossRefPubMed Copetti T, Demarchi F, Schneider C (2009) p65/RelA binds and activates the beclin 1 promoter. Autophagy 5(6):858–9CrossRefPubMed
63.
go back to reference Vadlamudi RK, Shin J (1998) Genomic structure and promoter analysis of the p62 gene encoding a nonproteasomal multiubiquitin chain binding protein. FEBS Lett 435:138–42CrossRefPubMed Vadlamudi RK, Shin J (1998) Genomic structure and promoter analysis of the p62 gene encoding a nonproteasomal multiubiquitin chain binding protein. FEBS Lett 435:138–42CrossRefPubMed
64.
go back to reference David A (2014) An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol 90:208–11CrossRef David A (2014) An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol 90:208–11CrossRef
Metadata
Title
Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy
Authors
Daniela Laura Papademetrio
Silvina Laura Lompardía
Tania Simunovich
Susana Costantino
Cintia Yamila Mihalez
Victoria Cavaliere
Élida Álvarez
Publication date
01-04-2016
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 2/2016
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-015-0388-3

Other articles of this Issue 2/2016

Targeted Oncology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine