Skip to main content
Top
Published in: Forensic Toxicology 1/2021

01-01-2021 | Original Article

4′-Fluoropyrrolidinononanophenone elicits neuronal cell apoptosis through elevating production of reactive oxygen and nitrogen species

Authors: Yoshifumi Morikawa, Hidetoshi Miyazono, Yuji Sakai, Koichi Suenami, Yasuhide Sasajima, Kiyohito Sato, Yuji Takekoshi, Yasunari Monguchi, Akira Ikari, Toshiyuki Matsunaga

Published in: Forensic Toxicology | Issue 1/2021

Login to get access

Abstract

Purpose

α-Pyrrolidinononanophenone (α-PNP) is a highly lipophilic synthetic cathinone (SC) that possesses a long hydrocarbon chain. It is considered that abuse of α-PNP and its derivatives causes serious health hazards, but there has been little evidence to date on the toxicological, pharmacological and pharmacokinetic properties. The purpose of this study was to elucidate the structure–toxicity relationship and the mechanism of neurocytotoxicity of α-PNP derivatives.

Methods

We synthesized three α-PNP derivatives [4′-fluoro, 4′-methoxy and 3′,4′-methylenedioxy substituents on the aromatic ring] and examined their toxicities against four human cells. The mechanism of 4′-fluoro-α-PNP (F-α-PNP)-induced neurocytotoxicity was investigated in terms of productions of reactive oxygen species (ROS) and reactive nitrogen species (RNS).

Results

Cytotoxicites of α-PNP derivatives were augmented by the presence of 4′-fluoro or 3′,4′-methylenedioxy group on α-PNP, and F-α-PNP exhibited the most potent cytotoxicity. The F-α-PNP treatment resulted in ROS production, cytochrome-c release into cytosol, caspase-9 and caspase-3 activation and DNA fragmentation in neuronal SK-N-SH cells. In addition, subcellular fractionation analysis demonstrated that F-α-PNP is localized in the mitochondria as early as 12 h after the incubation. α-PNP derivatives increased level of nitric oxide (NO) and 3-nitrotyrosine adducts, indicative of peroxynitrite formation, in SK-N-SH cells. Pretreatment with a NO or peroxynitrite donor also exacerbated the cellular toxicity of F-α-PNP.

Conclusion

The presence of 4′-fluoro or 3′,4′-methylenedioxy group in the aromatic ring on SCs likely elevates the risk of occurrence of health hazards. Additionally, enhanced production of ROS and RNS plays central roles in neuronal cell apoptotic mechanism of F-α-PNP.
Appendix
Available only for authorised users
Literature
3.
go back to reference German CL, Fleckenstein AE, Hanson GR (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci 97:2–8PubMedCrossRef German CL, Fleckenstein AE, Hanson GR (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci 97:2–8PubMedCrossRef
4.
go back to reference Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S (2016) α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol 34:41–50CrossRef Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S (2016) α-PVP (“flakka”): a new synthetic cathinone invades the drug arena. Forensic Toxicol 34:41–50CrossRef
5.
go back to reference Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160PubMedCrossRef Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160PubMedCrossRef
6.
go back to reference Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D (2014) Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil 5:37–52PubMedPubMedCentral Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D (2014) Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil 5:37–52PubMedPubMedCentral
8.
go back to reference Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: Method development, drug-distribution and interpretation results. J Anal Toxicol 37:135–146PubMedCrossRef Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: Method development, drug-distribution and interpretation results. J Anal Toxicol 37:135–146PubMedCrossRef
9.
go back to reference Beck O, Franzen L, Bäckberg M, Signell P, Helander A (2015) Intoxications involving MDPV in Sweden during 2010–2014: results from the STRIDA project. Clin Toxicol (Phila) 53:865–873CrossRef Beck O, Franzen L, Bäckberg M, Signell P, Helander A (2015) Intoxications involving MDPV in Sweden during 2010–2014: results from the STRIDA project. Clin Toxicol (Phila) 53:865–873CrossRef
10.
go back to reference Beck O, Franzén L, Bäckberg M, Signell P, Helander A (2016) Toxicity evaluation of α-pyrrolidinovalerophenone (α-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 54:568–575CrossRef Beck O, Franzén L, Bäckberg M, Signell P, Helander A (2016) Toxicity evaluation of α-pyrrolidinovalerophenone (α-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 54:568–575CrossRef
11.
go back to reference Zona LC, Grecco GG, Sprague JE (2016) Cooling down the bath salts: carvedilol attenuation of methylone and mephedrone mediated hyperthermia. Toxicol Lett 263:11–15PubMedCrossRef Zona LC, Grecco GG, Sprague JE (2016) Cooling down the bath salts: carvedilol attenuation of methylone and mephedrone mediated hyperthermia. Toxicol Lett 263:11–15PubMedCrossRef
12.
go back to reference Karila L, Billieux J, Benyamina A, Lançon C, Cottencin O (2016) The effects and risks associated to mephedrone and methylone in humans: a review of the preliminary evidences. Brain Res Bull 126:61–67PubMedCrossRef Karila L, Billieux J, Benyamina A, Lançon C, Cottencin O (2016) The effects and risks associated to mephedrone and methylone in humans: a review of the preliminary evidences. Brain Res Bull 126:61–67PubMedCrossRef
13.
go back to reference Nicolson PJ, Quinn MJ, Dodd JD (2010) Headshop heartache: acute mephedrone 'meow' myocarditis. Heart 96:2051–2052CrossRef Nicolson PJ, Quinn MJ, Dodd JD (2010) Headshop heartache: acute mephedrone 'meow' myocarditis. Heart 96:2051–2052CrossRef
14.
go back to reference Valente MJ, Araújo AM, Silva R, Bastos Mde L, Carvalho F, Guedes de Pinho P, Carvalho M (2016) 3,4-Methylenedioxypyrovalerone (MDPV): in vitro mechanisms of hepatotoxicity under normothermic and hyperthermic conditions. Arch Toxicol 90:1959–1973PubMedCrossRef Valente MJ, Araújo AM, Silva R, Bastos Mde L, Carvalho F, Guedes de Pinho P, Carvalho M (2016) 3,4-Methylenedioxypyrovalerone (MDPV): in vitro mechanisms of hepatotoxicity under normothermic and hyperthermic conditions. Arch Toxicol 90:1959–1973PubMedCrossRef
15.
go back to reference Valente MJ, Amaral C, Correia-da-Silva G, Duarte JA, Bastos ML, Carvalho F, Guedes de Pinho P, Carvalho M (2017) Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol 91:3663–3676PubMedCrossRef Valente MJ, Amaral C, Correia-da-Silva G, Duarte JA, Bastos ML, Carvalho F, Guedes de Pinho P, Carvalho M (2017) Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol 91:3663–3676PubMedCrossRef
16.
go back to reference Luethi D, Liechti ME, Krähenbühl S (2017) Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 387:57–66PubMedCrossRef Luethi D, Liechti ME, Krähenbühl S (2017) Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 387:57–66PubMedCrossRef
17.
go back to reference Siedlecka-Kroplewska K, Wrońska A, Stasiłojć G, Kmieć Z (2018) The designer drug 3-fluoromethcathinone induces oxidative stress and activates autophagy in HT22 neuronal cells. Neurotox Res 34:388–400PubMedPubMedCentralCrossRef Siedlecka-Kroplewska K, Wrońska A, Stasiłojć G, Kmieć Z (2018) The designer drug 3-fluoromethcathinone induces oxidative stress and activates autophagy in HT22 neuronal cells. Neurotox Res 34:388–400PubMedPubMedCentralCrossRef
18.
go back to reference Leong HS, Philp M, Simone M, Witting PK, Fu S (2020) Synthetic cathinones induce cell death in dopaminergic SH-SY5Y cells via stimulating mitochondrial dysfunction. Int J Mol Sci 21:1370PubMedCentralCrossRef Leong HS, Philp M, Simone M, Witting PK, Fu S (2020) Synthetic cathinones induce cell death in dopaminergic SH-SY5Y cells via stimulating mitochondrial dysfunction. Int J Mol Sci 21:1370PubMedCentralCrossRef
19.
go back to reference Matsunaga T, Morikawa Y, Kamata K, Shibata A, Miyazono H, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, El-Kabbani O, Ikari A (2017) α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 386:93–102PubMedCrossRef Matsunaga T, Morikawa Y, Kamata K, Shibata A, Miyazono H, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, El-Kabbani O, Ikari A (2017) α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 386:93–102PubMedCrossRef
20.
go back to reference Shima N, Kakehashi H, Matsuta S, Kamata H, Nakano S, Sasaki K, Kamata T, Nishioka H, Zaitsu K, Sato T, Miki A, Katagi M, Tsuchihashi H (2015) Urinary excretion and metabolism of the α-pyrrolidinophenone designer drug 1-phenyl-2-(pyrrolidin-1-yl)octan-1-one (PV9) in humans. Forensic Toxicol 33:279–294CrossRef Shima N, Kakehashi H, Matsuta S, Kamata H, Nakano S, Sasaki K, Kamata T, Nishioka H, Zaitsu K, Sato T, Miki A, Katagi M, Tsuchihashi H (2015) Urinary excretion and metabolism of the α-pyrrolidinophenone designer drug 1-phenyl-2-(pyrrolidin-1-yl)octan-1-one (PV9) in humans. Forensic Toxicol 33:279–294CrossRef
21.
go back to reference Usui S, Matsunaga T, Ukai S, Kiho T (1997) Growth suppressing activity for endothelial cells induced from macrophages by carboxymethylated curdlan. Biosci Biotechnol Biochem 61:1924–1925PubMedCrossRef Usui S, Matsunaga T, Ukai S, Kiho T (1997) Growth suppressing activity for endothelial cells induced from macrophages by carboxymethylated curdlan. Biosci Biotechnol Biochem 61:1924–1925PubMedCrossRef
22.
go back to reference Morikawa Y, Shibata A, Okumura N, Ikari A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, El-Kabbani O, Matsunaga T (2017) Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 314:1–11PubMedCrossRef Morikawa Y, Shibata A, Okumura N, Ikari A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, El-Kabbani O, Matsunaga T (2017) Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 314:1–11PubMedCrossRef
23.
go back to reference Matsunaga T, Kotamraju S, Kalivendi SV, Dhanasekaran A, Joseph J, Kalyanaraman B (2004) Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem 279:28614–28624PubMedCrossRef Matsunaga T, Kotamraju S, Kalivendi SV, Dhanasekaran A, Joseph J, Kalyanaraman B (2004) Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide. J Biol Chem 279:28614–28624PubMedCrossRef
24.
go back to reference Morikawa Y, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, Ikari A, Matsunaga T (2018) Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through altered production of reactive oxygen and nitrogen species. Eur J Pharmacol 841:113–121PubMedCrossRef Morikawa Y, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, Ikari A, Matsunaga T (2018) Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through altered production of reactive oxygen and nitrogen species. Eur J Pharmacol 841:113–121PubMedCrossRef
25.
go back to reference Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, El-Kabbani O, Tajima K, Hara A (2014) Nitric oxide confers cisplatin resistance in human lung cancer cells through up-regulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 48:1371–1385PubMedCrossRef Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, El-Kabbani O, Tajima K, Hara A (2014) Nitric oxide confers cisplatin resistance in human lung cancer cells through up-regulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 48:1371–1385PubMedCrossRef
26.
go back to reference Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426PubMed Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426PubMed
29.
go back to reference Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221PubMedCrossRef Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221PubMedCrossRef
32.
go back to reference Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624PubMedCrossRefPubMedCentral Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624PubMedCrossRefPubMedCentral
33.
go back to reference Ceriello A (2002) Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl 129:51–58 Ceriello A (2002) Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int J Clin Pract Suppl 129:51–58
34.
go back to reference Matsunaga T, Morikawa Y, Tanigawa M, Kamata K, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, El-Kabbani O, Ikari A (2017) Structure-activity relationship for toxicity of α-pyrrolidinophenones in human aortic endothelial cells. Forensic Toxicol 35:309–316CrossRef Matsunaga T, Morikawa Y, Tanigawa M, Kamata K, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, El-Kabbani O, Ikari A (2017) Structure-activity relationship for toxicity of α-pyrrolidinophenones in human aortic endothelial cells. Forensic Toxicol 35:309–316CrossRef
35.
go back to reference Hofsli E, Nissen-Meyer J (1990) Reversal of multidrug resistance by lipophilic drugs. Cancer Res 50:3997–4002PubMed Hofsli E, Nissen-Meyer J (1990) Reversal of multidrug resistance by lipophilic drugs. Cancer Res 50:3997–4002PubMed
36.
go back to reference Westphal F, Rösner P, Junge T (2010) Differentiation of regioisomeric ring-substituted fluorophenethylamines with product ion spectrometry. Forensic Sci Int 194:53–59PubMedCrossRef Westphal F, Rösner P, Junge T (2010) Differentiation of regioisomeric ring-substituted fluorophenethylamines with product ion spectrometry. Forensic Sci Int 194:53–59PubMedCrossRef
37.
go back to reference Coccini T, Vecchio S, Crevani M, De Simone U (2019) Cytotoxic effects of 3,4-catechol-PV (one major MDPV metabolite) on human dopaminergic SH-SY5Y cells. Neurotox Res 35:49–62PubMedCrossRef Coccini T, Vecchio S, Crevani M, De Simone U (2019) Cytotoxic effects of 3,4-catechol-PV (one major MDPV metabolite) on human dopaminergic SH-SY5Y cells. Neurotox Res 35:49–62PubMedCrossRef
38.
go back to reference Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, Huestis MA (2016) Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), Its metabolites, and related analogs. Curr Top Behav Neurosci 32:93–117CrossRef Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, Huestis MA (2016) Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), Its metabolites, and related analogs. Curr Top Behav Neurosci 32:93–117CrossRef
39.
go back to reference Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Suzuki O, Watanabe K (2014) Identification and quantitation of a new cathinone designer drug PV9 in an “aroma liquid” product, antemortem whole blood and urine specimens, and a postmortem whole blood specimen in a fatal poisoning case. Forensic Toxicol 32:243–250CrossRef Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Suzuki O, Watanabe K (2014) Identification and quantitation of a new cathinone designer drug PV9 in an “aroma liquid” product, antemortem whole blood and urine specimens, and a postmortem whole blood specimen in a fatal poisoning case. Forensic Toxicol 32:243–250CrossRef
40.
go back to reference Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N (2015) A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med 17:421–426CrossRef Kudo K, Usumoto Y, Kikura-Hanajiri R, Sameshima N, Tsuji A, Ikeda N (2015) A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. Leg Med 17:421–426CrossRef
41.
go back to reference Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 220:243–251PubMedCrossRef Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 220:243–251PubMedCrossRef
42.
go back to reference Wisessmith W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2009) Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 46:433–440PubMedCrossRef Wisessmith W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2009) Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 46:433–440PubMedCrossRef
43.
go back to reference Matsunaga T, Arakaki M, Kamiya T, Haga M, Endo S, El-Kabbani O, Hara A (2010) Nitric oxide mitigates apoptosis in human endothelial cells induced by 9,10-phenanthrenequinone: role of proteasomal function. Toxicology 268:191–197PubMedCrossRef Matsunaga T, Arakaki M, Kamiya T, Haga M, Endo S, El-Kabbani O, Hara A (2010) Nitric oxide mitigates apoptosis in human endothelial cells induced by 9,10-phenanthrenequinone: role of proteasomal function. Toxicology 268:191–197PubMedCrossRef
44.
45.
go back to reference Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19PubMedPubMedCentralCrossRef Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19PubMedPubMedCentralCrossRef
46.
go back to reference Fu J, Shi Q, Song X, Xia X, Su C, Liu Z, Song E, Song Y (2016) Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling. Environ Toxicol Pharmacol 41:241–250PubMedCrossRef Fu J, Shi Q, Song X, Xia X, Su C, Liu Z, Song E, Song Y (2016) Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling. Environ Toxicol Pharmacol 41:241–250PubMedCrossRef
47.
go back to reference Guo Z, Shao L, Du Q, Park KS, Geller DA (2007) Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter. FASEB J 21:535–542PubMedCrossRef Guo Z, Shao L, Du Q, Park KS, Geller DA (2007) Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter. FASEB J 21:535–542PubMedCrossRef
48.
go back to reference Hu J, Luo CX, Chu WH, Shan YA, Qian ZM, Zhu G, Yu YB, Feng H (2012) 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS ONE 7:e50764PubMedPubMedCentralCrossRef Hu J, Luo CX, Chu WH, Shan YA, Qian ZM, Zhu G, Yu YB, Feng H (2012) 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS ONE 7:e50764PubMedPubMedCentralCrossRef
49.
50.
go back to reference Islam BU, Habib S, Ali SA, Moinuddin AA (2017) Role of peroxynitrite-induced activation of poly(ADP-ribose) polymerase (PARP) in circulatory shock and related pathological conditions. Cardiovasc Toxicol 17:373–383PubMedCrossRef Islam BU, Habib S, Ali SA, Moinuddin AA (2017) Role of peroxynitrite-induced activation of poly(ADP-ribose) polymerase (PARP) in circulatory shock and related pathological conditions. Cardiovasc Toxicol 17:373–383PubMedCrossRef
Metadata
Title
4′-Fluoropyrrolidinononanophenone elicits neuronal cell apoptosis through elevating production of reactive oxygen and nitrogen species
Authors
Yoshifumi Morikawa
Hidetoshi Miyazono
Yuji Sakai
Koichi Suenami
Yasuhide Sasajima
Kiyohito Sato
Yuji Takekoshi
Yasunari Monguchi
Akira Ikari
Toshiyuki Matsunaga
Publication date
01-01-2021
Publisher
Springer Singapore
Published in
Forensic Toxicology / Issue 1/2021
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-020-00550-x

Other articles of this Issue 1/2021

Forensic Toxicology 1/2021 Go to the issue