Skip to main content
Top
Published in: Forensic Toxicology 1/2021

Open Access 01-01-2021 | Original Article

Metabolism of synthetic cathinones through the zebrafish water tank model: a promising tool for forensic toxicology laboratories

Authors: Estefany Prado, Rebecca Rodrigues Matos, Geovana Maria de Lima Gomes, Clarisse Baptista Lima de Sá, Isabelle Karine da Costa Nunes, Carina de Souza Anselmo, Adriana Sousa de Oliveira, Luciana Silva do Amaral Cohen, Denilson Soares de Siqueira, Marco Antônio Martins de Oliveira, João Carlos Laboissiere Ambrosio, Gabriela Vanini Costa, Francisco Radler de Aquino Neto, Monica Costa Padilha, Henrique Marcelo Gualberto Pereira

Published in: Forensic Toxicology | Issue 1/2021

Login to get access

Abstract

Purpose

The aim of this study was to identify in vivo phase I metabolites of five psychoactive substances: N-ethylpentylone, ethylone, methylone, α-PVP and 4-CDC, using the in house developed experimental set-up zebrafish (Danio rerio) water tank (ZWT). High-resolution mass spectrometry allowed for metabolite identification. A pilot study of reference standard collection of N-ethylpentylone from the water tank was conducted.

Methods

ZWT consisted in 8 fish placed in a 200 mL recipient-containing water for a single cathinone. Experiments were performed in triplicate. Water tank samples were collected after 8 h and pretreated through solid-phase extraction. Separation and accurate-mass spectra of metabolites were obtained using liquid chromatography–high resolution tandem mass spectrometry.

Results

Phase I metabolites of α-PVP were identified, which were formed involving ketone reduction, hydroxylation, and 2″-oxo-pyrrolidine formation. The lactam derivative was the major metabolite observed for α-PVP in ZWT. N-Ethylpentylone and ethylone were transformed into phase I metabolites involving reduction, hydroxylation, and dealkylation. 4-CDC was transformed into phase I metabolites, reported for the first time, involving N-dealkylation, N,N-bis-dealkylation and reduction of the ketone group, the last one being the most intense after 8 h of the experiment.

Conclusions

ZWT model indicated to be very useful to study the metabolism of the synthetic cathinones, such as N-ethylpentylone, ethylone, α-PVP and 4-CDC. Methylone seems to be a potent CYP450 inhibitor in zebrafish. More experiments are needed to better evaluate this issue. Finally, this approach was quite simple, straightforward, extremely low cost, and fast for “human-like” metabolic studies of synthetic cathinones.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sardela VF, Martucci MEP, de Araújo ALD, Leal EC, Oliveira DS, Carneiro GRA, Deventer K, Van Eenoo P, Pereira HMG, Aquino Neto FR (2018) Comprehensive analysis by liquid chromatography-Q-Orbitrap mass spectrometry: fast screening of peptides and organic molecules. J Mass Spectrom 53:476–503. https://doi.org/10.1002/jms.4077CrossRefPubMed Sardela VF, Martucci MEP, de Araújo ALD, Leal EC, Oliveira DS, Carneiro GRA, Deventer K, Van Eenoo P, Pereira HMG, Aquino Neto FR (2018) Comprehensive analysis by liquid chromatography-Q-Orbitrap mass spectrometry: fast screening of peptides and organic molecules. J Mass Spectrom 53:476–503. https://​doi.​org/​10.​1002/​jms.​4077CrossRefPubMed
3.
go back to reference Błażewicz A, Bednarek E, Popławska M, Olech N, Sitkowski J, Kozerski L (2019) Identification and structural characterization of synthetic cathinones: N-propylcathinone, 2,4-dimethylmethcathinone, 2,4-dimethylethcathinone, 2,4-dimethyl-α-pyrrolidinopropiophenone, 4-bromo-α-pyrrolidinopropiophe-none, 1-(2,3-dihydro-1H-inden-5-yl)-2-(pyrrolidin-1-yl)hexan-1-one and 2,4-dimethylisocathinone. Forensic Toxicol 37:288–307. https://doi.org/10.1007/s11419-018-00463-w(open access article)CrossRef Błażewicz A, Bednarek E, Popławska M, Olech N, Sitkowski J, Kozerski L (2019) Identification and structural characterization of synthetic cathinones: N-propylcathinone, 2,4-dimethylmethcathinone, 2,4-dimethylethcathinone, 2,4-dimethyl-α-pyrrolidinopropiophenone, 4-bromo-α-pyrrolidinopropiophe-none, 1-(2,3-dihydro-1H-inden-5-yl)-2-(pyrrolidin-1-yl)hexan-1-one and 2,4-dimethylisocathinone. Forensic Toxicol 37:288–307. https://​doi.​org/​10.​1007/​s11419-018-00463-w(open access article)CrossRef
12.
go back to reference Appolonova SA, Palacio C, Shestakova KM, Mesonzhnik NV, Roman AB, Kuznetsov M, Markin PA, Bochkareva NL, Burmykin D, Ovcharov M, Musile G, Tagliaro F, Savchuk SA (2020) In vivo and in vitro metabolism of the novel synthetic cannabinoid 5F-APINAC. Forensic Toxicol 38:160–171. https://doi.org/10.1007/s11419-019-00503-zCrossRef Appolonova SA, Palacio C, Shestakova KM, Mesonzhnik NV, Roman AB, Kuznetsov M, Markin PA, Bochkareva NL, Burmykin D, Ovcharov M, Musile G, Tagliaro F, Savchuk SA (2020) In vivo and in vitro metabolism of the novel synthetic cannabinoid 5F-APINAC. Forensic Toxicol 38:160–171. https://​doi.​org/​10.​1007/​s11419-019-00503-zCrossRef
13.
go back to reference Sardela VF, de Sousa Anselmo C, da Costa Nunes IK, Carneiro GRA, dos Santos GRC, de Carvalho AR, de Jesus LaBanca B, Oliveira DS, Ribeiro WD, de Araújo ALD, Padilha MC, de Lima CKF, de Souza VP, de Aquino Neto FR, Pereira HMG (2018) Zebrafish (Danio rerio) water tank model for the investigation of drug metabolism: progress, outlook, and challenges. Drug Test Anal 10:1657–1669. https://doi.org/10.1002/dta.2523CrossRefPubMed Sardela VF, de Sousa Anselmo C, da Costa Nunes IK, Carneiro GRA, dos Santos GRC, de Carvalho AR, de Jesus LaBanca B, Oliveira DS, Ribeiro WD, de Araújo ALD, Padilha MC, de Lima CKF, de Souza VP, de Aquino Neto FR, Pereira HMG (2018) Zebrafish (Danio rerio) water tank model for the investigation of drug metabolism: progress, outlook, and challenges. Drug Test Anal 10:1657–1669. https://​doi.​org/​10.​1002/​dta.​2523CrossRefPubMed
17.
19.
go back to reference Xu DQ, Daí Y, Zhang WF, Wang Y-Y, Zhang Y, Wang J-F, Zhao Q-L, Li X (2020) Rapid identification of MDMB-CHMINACA metabolites using zebrafish and human liver microsomes as the biotransformation system by LC-QE-HF-MS. J Anal Toxicol 5:8. https://doi.org/10.1093/jat/bkaa001(Online ahead of print)CrossRef Xu DQ, Daí Y, Zhang WF, Wang Y-Y, Zhang Y, Wang J-F, Zhao Q-L, Li X (2020) Rapid identification of MDMB-CHMINACA metabolites using zebrafish and human liver microsomes as the biotransformation system by LC-QE-HF-MS. J Anal Toxicol 5:8. https://​doi.​org/​10.​1093/​jat/​bkaa001(Online ahead of print)CrossRef
20.
go back to reference Negreira N, Erratico C, Kosjek T, van Nuijs ALN, Heath E, Neels H, Covaci A (2015) In vitro phase I and phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem 407:5803–5816. https://doi.org/10.1007/s00216-015-8763-6CrossRefPubMed Negreira N, Erratico C, Kosjek T, van Nuijs ALN, Heath E, Neels H, Covaci A (2015) In vitro phase I and phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem 407:5803–5816. https://​doi.​org/​10.​1007/​s00216-015-8763-6CrossRefPubMed
21.
go back to reference Shima N, Katagi M, Kamata H, Matsuta S, Sasaki K, Kamata T, Nishioka H, Miki A, Tatsuno M, Zaitsu K, Ishii A, Sato T, Tsuchihashi H, Suzuki K (2014) Metabolism of the newly encountered designer drug α-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites. Forensic Toxicol 32:59–67. https://doi.org/10.1007/s11419-013-0202-9CrossRef Shima N, Katagi M, Kamata H, Matsuta S, Sasaki K, Kamata T, Nishioka H, Miki A, Tatsuno M, Zaitsu K, Ishii A, Sato T, Tsuchihashi H, Suzuki K (2014) Metabolism of the newly encountered designer drug α-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites. Forensic Toxicol 32:59–67. https://​doi.​org/​10.​1007/​s11419-013-0202-9CrossRef
24.
go back to reference Niessen WM, Correa RA (2017) Interpretation of MS-MS mass spectra of drugs and pesticides. Wiley, HobokenCrossRef Niessen WM, Correa RA (2017) Interpretation of MS-MS mass spectra of drugs and pesticides. Wiley, HobokenCrossRef
25.
go back to reference Kamata HT, Shima N, Zaitsu K, Kamata T, Nishikawa M, Katagi M, Miki A, Tsuchihashi H (2007) Simultaneous analysis of new designer drug, methylone, and its metabolites in urine by gas chromatography-mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry. Jpn J Forensic Sci Tech 12:97–106. https://doi.org/10.3408/jafst.12.97CrossRef Kamata HT, Shima N, Zaitsu K, Kamata T, Nishikawa M, Katagi M, Miki A, Tsuchihashi H (2007) Simultaneous analysis of new designer drug, methylone, and its metabolites in urine by gas chromatography-mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry. Jpn J Forensic Sci Tech 12:97–106. https://​doi.​org/​10.​3408/​jafst.​12.​97CrossRef
35.
go back to reference Ashby J, Elliott BM (1984) 1,3-Benzodioxole derivative. In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry. Pergamon, Oxford, pp 111–141CrossRef Ashby J, Elliott BM (1984) 1,3-Benzodioxole derivative. In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry. Pergamon, Oxford, pp 111–141CrossRef
Metadata
Title
Metabolism of synthetic cathinones through the zebrafish water tank model: a promising tool for forensic toxicology laboratories
Authors
Estefany Prado
Rebecca Rodrigues Matos
Geovana Maria de Lima Gomes
Clarisse Baptista Lima de Sá
Isabelle Karine da Costa Nunes
Carina de Souza Anselmo
Adriana Sousa de Oliveira
Luciana Silva do Amaral Cohen
Denilson Soares de Siqueira
Marco Antônio Martins de Oliveira
João Carlos Laboissiere Ambrosio
Gabriela Vanini Costa
Francisco Radler de Aquino Neto
Monica Costa Padilha
Henrique Marcelo Gualberto Pereira
Publication date
01-01-2021
Publisher
Springer Singapore
Published in
Forensic Toxicology / Issue 1/2021
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-020-00543-w

Other articles of this Issue 1/2021

Forensic Toxicology 1/2021 Go to the issue