Skip to main content
Top
Published in: Forensic Toxicology 1/2016

01-01-2016 | Original Article

Identification and characterization of α-PVT, α-PBT, and their bromothienyl analogs found in illicit drug products

Authors: Takahiro Doi, Akiko Asada, Akihiro Takeda, Takaomi Tagami, Munehiro Katagi, Shuntaro Matsuta, Hiroe Kamata, Masami Kawaguchi, Yuka Satsuki, Yoshiyuki Sawabe, Hirotaka Obana

Published in: Forensic Toxicology | Issue 1/2016

Login to get access

Abstract

Recently, thienyl derivatives of cathinones have appeared on the market as new psychoactive substances (NPS). In this study, identification and characterization of 2-(pyrrolidin-1-yl)-1-(thiophen-2-yl)pentan-1-one (α-PVT), 2-(pyrrolidin-1-yl)-1-(thiophen-2-yl)butan-1-one (α-PBT), and their bromothienyl analogs disclosed in illicit products are described. In our analysis, some analogous compounds of α-PVT, which had a bromine substitution on the thiophene ring, were identified in the samples containing α-PVT; 1-(4-bromothiophen-2-yl)-2-(pyrrolidin-1-yl)pentan-1-one, 1-(5-bromothiophen-2-yl)-2-(pyrrolidin-1-yl)pentan-1-one, and 1-(4,5-dibromothiophen-2-yl)-2-(pyrrolidin-1-yl)pentan-1-one by comparing the analytical data with synthetic reference standards. We also observed 1-(4-bromothiophen-2-yl)-2-(pyrrolidin-1-yl)butan-1-one and 1-(5-bromothiophen-2-yl)-2-(pyrrolidin-1-yl)butan-1-one from a powder product, in which α-PBT was detected. The brominated α-PVTs were also found when overbrominated 1-(thiophen-2-yl)pentan-1-one reacted with pyrrolidine, and they are suspected to be the by-products of α-PVT synthesis. In Japan, cathinone derivatives with a phenyl group as the aromatic ring have been widely controlled by generic scheduling. To escape from such a regulation, analogs with different aromatic groups such as α-PVT and α-PBT appeared on the illicit market of psychoactive compounds. To our knowledge, this is the first report describing identification of α-PBT, and bromothienyl analogs of both α-PVT and α-PBT in illicit drug products. The synthetic method and analytical data shown in this study will be useful for identification of the thienyl derivatives of cathinone analogs.
Literature
1.
go back to reference Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRef Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRef
2.
go back to reference Uemura N, Fukaya H, Kanai C, Yoshida M, Nakajima J, Takahashi M, Suzuki J, Moriyasu T, Nakae D (2014) Identification of a synthetic cannabinoid A-836339 as a novel compound found in a product. Forensic Toxicol 32:45–50CrossRef Uemura N, Fukaya H, Kanai C, Yoshida M, Nakajima J, Takahashi M, Suzuki J, Moriyasu T, Nakae D (2014) Identification of a synthetic cannabinoid A-836339 as a novel compound found in a product. Forensic Toxicol 32:45–50CrossRef
3.
go back to reference Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240CrossRef Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240CrossRef
4.
go back to reference Zuba D, Geppert B, Sekuła K, Żaba C (2013) [1-(Tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2, 2, 3, 3-tetramethylcyclopropyl) methanone: a new synthetic cannabinoid identified on the drug market. Forensic Toxicol 31:281–291CrossRef Zuba D, Geppert B, Sekuła K, Żaba C (2013) [1-(Tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2, 2, 3, 3-tetramethylcyclopropyl) methanone: a new synthetic cannabinoid identified on the drug market. Forensic Toxicol 31:281–291CrossRef
5.
go back to reference Leffler AM, Smith PB, de Armas A, Dorman FL (2014) The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 234:50–56PubMedCrossRef Leffler AM, Smith PB, de Armas A, Dorman FL (2014) The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 234:50–56PubMedCrossRef
6.
go back to reference Fornal E, Stachniuk A, Wojtyla A (2013) LC-Q/TOF mass spectrometry data driven identification and spectroscopic characterisation of a new 3,4-methylenedioxy-N-benzyl cathinone (BMDP). J Pharm Biomed Anal 72:139–144PubMedCrossRef Fornal E, Stachniuk A, Wojtyla A (2013) LC-Q/TOF mass spectrometry data driven identification and spectroscopic characterisation of a new 3,4-methylenedioxy-N-benzyl cathinone (BMDP). J Pharm Biomed Anal 72:139–144PubMedCrossRef
7.
go back to reference Zaitsu K, Katagi M, Tsuchihashi H, Ishii A (2014) Recently abused synthetic cathinones, α-pyrrolidinophenone derivatives: a review of their pharmacology, acute toxicity, and metabolism. Forensic Toxicol 32:1–8CrossRef Zaitsu K, Katagi M, Tsuchihashi H, Ishii A (2014) Recently abused synthetic cathinones, α-pyrrolidinophenone derivatives: a review of their pharmacology, acute toxicity, and metabolism. Forensic Toxicol 32:1–8CrossRef
8.
go back to reference Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2014) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 6:832–839PubMedCrossRef Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2014) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 6:832–839PubMedCrossRef
9.
go back to reference Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32PubMedCrossRef Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32PubMedCrossRef
10.
go back to reference Asada A, Doi T, Takeda A, Tagami T, Kawaguchi M, Satsuki Y, Sawabe Y (2015) Identification of analogs of LY2183240 and the LY2183240 2′-isomer in herbal products. Forensic Toxicol 33:311–320CrossRef Asada A, Doi T, Takeda A, Tagami T, Kawaguchi M, Satsuki Y, Sawabe Y (2015) Identification of analogs of LY2183240 and the LY2183240 2′-isomer in herbal products. Forensic Toxicol 33:311–320CrossRef
11.
go back to reference Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 49:1420–1432PubMedPubMedCentralCrossRef Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 49:1420–1432PubMedPubMedCentralCrossRef
12.
13.
go back to reference Stojanovska N, Fu S, Tahtouh M, Kelly T, Beavis A, Kirkbride KP (2013) A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci Int 224:8–26PubMedCrossRef Stojanovska N, Fu S, Tahtouh M, Kelly T, Beavis A, Kirkbride KP (2013) A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci Int 224:8–26PubMedCrossRef
14.
go back to reference Zuba D (2012) Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal Chem 32:15–30CrossRef Zuba D (2012) Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal Chem 32:15–30CrossRef
15.
go back to reference Westphal F, Junge T, Girreser U, Greibl W, Doering C (2012) Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci Int 217:157–167PubMedCrossRef Westphal F, Junge T, Girreser U, Greibl W, Doering C (2012) Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci Int 217:157–167PubMedCrossRef
Metadata
Title
Identification and characterization of α-PVT, α-PBT, and their bromothienyl analogs found in illicit drug products
Authors
Takahiro Doi
Akiko Asada
Akihiro Takeda
Takaomi Tagami
Munehiro Katagi
Shuntaro Matsuta
Hiroe Kamata
Masami Kawaguchi
Yuka Satsuki
Yoshiyuki Sawabe
Hirotaka Obana
Publication date
01-01-2016
Publisher
Springer Japan
Published in
Forensic Toxicology / Issue 1/2016
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-015-0288-3

Other articles of this Issue 1/2016

Forensic Toxicology 1/2016 Go to the issue