Skip to main content
Top
Published in: Forensic Toxicology 1/2014

01-01-2014 | Original Article

Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 3,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products

Authors: Nahoko Uchiyama, Yoshihiko Shimokawa, Satoru Matsuda, Maiko Kawamura, Ruri Kikura-Hanajiri, Yukihiro Goda

Published in: Forensic Toxicology | Issue 1/2014

Login to get access

Abstract

Two new types of synthetic cannabinoids, an AM-2201 benzimidazole analog (FUBIMINA, 1) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM, 2), and three newly emerged phenethylamine derivatives, 25B-NBOMe (3), 2C-N-NBOMe (4), and a 25H-NBOMe 3,4,5-trimethoxybenzyl analog (5), were detected in illegal products distributed in Japan. The identification was based on liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS), high-resolution MS, and nuclear magnetic resonance analyses. Different from the representative synthetic cannabinoids, such as JWH-018, which have a naphthoylindole moiety, compounds 1 and 2 were completely new types of synthetic cannabinoids; compound 1 had a benzimidazole group in place of an indole group, and compound 2 had a 4-methylpiperazine group in place of the naphthyl group. Compounds 3 and 4 were N-o-methoxybenzyl derivatives of 2,5-dimethoxyphenethylamines (25-NBOMe series), which had been previously detected in European countries, but have newly emerged in Japan. Compound 5 had an N-trimethoxybenzyl group in place of an N-o-methoxybenzyl group. Data on the chemistry and pharmacology of compounds 1, 2, and 5 have never been reported to our knowledge.
Literature
4.
go back to reference Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRef Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRef
5.
go back to reference Kikura-Hanajiri R, Uchiyama N, Kawamura M, Ogata J, Goda Y (2013) Prevalence of new designer drugs and their legal status in Japan. Yakugaku Zasshi 133:31–40 (in Japanese with English abstract)PubMedCrossRef Kikura-Hanajiri R, Uchiyama N, Kawamura M, Ogata J, Goda Y (2013) Prevalence of new designer drugs and their legal status in Japan. Yakugaku Zasshi 133:31–40 (in Japanese with English abstract)PubMedCrossRef
6.
go back to reference Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240CrossRef Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240CrossRef
7.
go back to reference Uchiyama N, Matsuda S, Wakana D, Kikura-Hanajiri R, Goda Y (2013) New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products. Forensic Toxicol 31:93–100CrossRef Uchiyama N, Matsuda S, Wakana D, Kikura-Hanajiri R, Goda Y (2013) New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products. Forensic Toxicol 31:93–100CrossRef
8.
go back to reference Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Identification of two new-type designer drugs, a piperazine derivative MT-45 (I-C6) and a synthetic peptide Noopept (GVS-111), with a synthetic cannabinoid A-834735, a cathinone derivative 4-methoxy-α-PVP and a phenethylamine derivative 4-methylbuphedrine from illegal products. Forensic Toxicol. doi:10.1007/s11419-013-0194-5 Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Identification of two new-type designer drugs, a piperazine derivative MT-45 (I-C6) and a synthetic peptide Noopept (GVS-111), with a synthetic cannabinoid A-834735, a cathinone derivative 4-methoxy-α-PVP and a phenethylamine derivative 4-methylbuphedrine from illegal products. Forensic Toxicol. doi:10.​1007/​s11419-013-0194-5
9.
go back to reference Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal. doi:10.1002/dta.1584 Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal. doi:10.​1002/​dta.​1584
10.
go back to reference Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32PubMedCrossRef Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32PubMedCrossRef
11.
go back to reference Lopyrev VA, Larina LI, Vakul’skaya TI, Shibanova EF, Titova IA, Voronkov MG, Liepins E (1982) Investigation of benzimidazoles. III. Transmission of the substituent effects in 2-substituted 1-methylbenzimidazoles studied by carbon-13 nuclear magnetic resonance. Org Magn Reson 20:212–216CrossRef Lopyrev VA, Larina LI, Vakul’skaya TI, Shibanova EF, Titova IA, Voronkov MG, Liepins E (1982) Investigation of benzimidazoles. III. Transmission of the substituent effects in 2-substituted 1-methylbenzimidazoles studied by carbon-13 nuclear magnetic resonance. Org Magn Reson 20:212–216CrossRef
12.
go back to reference Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125CrossRef Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125CrossRef
13.
go back to reference Moir EM, Yoshiizumi K, Cairns J, Cowley P, Ferguson M, Jeremiah F, Kiyoi T, Morphy R, Tierney J, Wishart G, York M, Baker J, Cottney JE, Houghton AK, McPhail P, Osprey A, Walker G, Adam JM (2010) Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. Med Chem Commun 1:54–60CrossRef Moir EM, Yoshiizumi K, Cairns J, Cowley P, Ferguson M, Jeremiah F, Kiyoi T, Morphy R, Tierney J, Wishart G, York M, Baker J, Cottney JE, Houghton AK, McPhail P, Osprey A, Walker G, Adam JM (2010) Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. Med Chem Commun 1:54–60CrossRef
14.
go back to reference Zuba D, Sekuła K, Buczek A (2012) Identification and characterization of 2,5-dimethoxy-4-nitro-β-phenethylamine (2C-N)—a new member of 2C-series of designer drug. Forensic Sci Int 222:298–305PubMedCrossRef Zuba D, Sekuła K, Buczek A (2012) Identification and characterization of 2,5-dimethoxy-4-nitro-β-phenethylamine (2C-N)—a new member of 2C-series of designer drug. Forensic Sci Int 222:298–305PubMedCrossRef
15.
go back to reference Zuba D, Sekuła K, Buczek A (2013) 25C-NBOMe—new potent hallucinogenic substance identified on the drug market. Forensic Sci Int 227:7–14PubMedCrossRef Zuba D, Sekuła K, Buczek A (2013) 25C-NBOMe—new potent hallucinogenic substance identified on the drug market. Forensic Sci Int 227:7–14PubMedCrossRef
16.
go back to reference Silva ME, Heim R, Strasser A, Elz S, Dove S (2011) Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J Comput Aided Mol Des 25:51–66PubMedCrossRef Silva ME, Heim R, Strasser A, Elz S, Dove S (2011) Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J Comput Aided Mol Des 25:51–66PubMedCrossRef
17.
go back to reference Acuña-Castillo C, Villalobos C, Moya PR, Sáez P, Cassels BK, Huidobro-Toro JP (2002) Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors. Br J Pharmacol 136:510–519PubMedCrossRef Acuña-Castillo C, Villalobos C, Moya PR, Sáez P, Cassels BK, Huidobro-Toro JP (2002) Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors. Br J Pharmacol 136:510–519PubMedCrossRef
Metadata
Title
Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 3,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products
Authors
Nahoko Uchiyama
Yoshihiko Shimokawa
Satoru Matsuda
Maiko Kawamura
Ruri Kikura-Hanajiri
Yukihiro Goda
Publication date
01-01-2014
Publisher
Springer Japan
Published in
Forensic Toxicology / Issue 1/2014
Print ISSN: 1860-8965
Electronic ISSN: 1860-8973
DOI
https://doi.org/10.1007/s11419-013-0217-2

Other articles of this Issue 1/2014

Forensic Toxicology 1/2014 Go to the issue