Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2019

01-06-2019 | Research Article

Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell-Free Protein Synthesis System and O-2-[18F]Fluoroethyl-L-Tyrosine: [18F]FET-HER2 Affibody Molecule

Authors: Ai Yanai, Ryuichi Harada, Ren Iwata, Takeo Yoshikawa, Yoichi Ishikawa, Shozo Furumoto, Takanori Ishida, Kazuhiko Yanai

Published in: Molecular Imaging and Biology | Issue 3/2019

Login to get access

Abstract

Purpose

Although a preparation method for F-18-labeled proteins that used a cell-free translation system and 4-[18F]fluoro-L-proline instead of L-proline has been reported, its introduction depends on amino acid sequences of target proteins. The purpose of the study was to propose site-specific labeling method of F-18 by using cell-free translation systems supplemented with an engineered orthogonal aminoacyl-tRNA synthetase derived from Methanocaldococcus jannaschii (pCNF-RS)/suppressor tRNA (tRNACUAopt) pair, O-2-[18F]fluoroethyl-L-tyrosine ([18F]FET), and template DNA inserted with an amber codon.

Procedures

[18F]FET was prepared from the corresponding precursor and determined whether [18F]FET could be incorporated into an affibody molecule for human epidermal growth factor receptor type 2 (HER2; ZHER2:342) as the 21st amino acid used with the pCNF-RS-tRNACUAopt pair and template DNA inserted with an amber codon in a cell-free translation system. Using SKOV-3 cells, we performed an in vitro binding assay of [18F]FET-ZHER2:342. Furthermore, in vivo positron emission tomography (PET) imaging in SKOV-3 xenograft-bearing mice was performed after the intravenous administration of [18F]FET-ZHER2:342.

Results

[18F]FET was successfully incorporated into proteins by using commercially available cell-free protein synthesis reagents with a pCNF-RS-tRNACUAopt pair and template DNA of the desired proteins inserted with an amber codon. The mean radiochemical yield (non-decay-corrected) of [18F]FET-ZHER2:342 was 6.5 ± 4.1 %. An in vitro cell binding assay revealed that SKOV-3 cells–bound [18F]FET-ZHER2:342 expressed HER2. The in vivo PET imaging in SKOV-3 xenograft-bearing mice revealed that [18F]FET-ZHER2:342 accumulated in SKOV-3 xenografts.

Conclusion

The method proposed in this study might be useful for preparing proteins with F-18 and molecular imaging in the preclinical development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koerber JT, Thomsen ND, Hannigan BT, Degrado WF, Wells JA (2013) Nature-inspired design of motif-specific antibody scaffolds. Nat Biotechnol 31:916–921CrossRefPubMedPubMedCentral Koerber JT, Thomsen ND, Hannigan BT, Degrado WF, Wells JA (2013) Nature-inspired design of motif-specific antibody scaffolds. Nat Biotechnol 31:916–921CrossRefPubMedPubMedCentral
2.
go back to reference Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S (2017) Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods 130:23–35CrossRefPubMed Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S (2017) Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods 130:23–35CrossRefPubMed
3.
go back to reference Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, Lub-de Hooge MN, Brouwers AH, de Vries EGE (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90SCrossRef Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, Lub-de Hooge MN, Brouwers AH, de Vries EGE (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90SCrossRef
4.
go back to reference Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568CrossRefPubMed Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568CrossRefPubMed
5.
go back to reference Orlova A, Magnusson M, Eriksson TL et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348CrossRefPubMed Orlova A, Magnusson M, Eriksson TL et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348CrossRefPubMed
6.
go back to reference Wallberg H, Grafstrom J, Cheng Q, Lu L, Martinsson Ahlzen HS, Samen E, Thorell JO, Johansson K, Dunas F, Olofsson MH, Stone-Elander S, Arner ESJ, Stahl S (2012) HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule. J Nucl Med 53:1446–1453CrossRefPubMed Wallberg H, Grafstrom J, Cheng Q, Lu L, Martinsson Ahlzen HS, Samen E, Thorell JO, Johansson K, Dunas F, Olofsson MH, Stone-Elander S, Arner ESJ, Stahl S (2012) HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule. J Nucl Med 53:1446–1453CrossRefPubMed
7.
go back to reference Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D (2013) Three methods for 18F labeling of the HER2-binding affibody molecule ZHER2:2891 including preclinical assessment. J Nucl Med 54:1981–1988CrossRefPubMed Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D (2013) Three methods for 18F labeling of the HER2-binding affibody molecule ZHER2:2891 including preclinical assessment. J Nucl Med 54:1981–1988CrossRefPubMed
8.
go back to reference Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Ishiwata K, Iwata R, Yanai K (2016) Synthesis and characterization of 18F-interleukin-8 using a cell-free translation system and 4-18F-fluoro-L-proline. J Nucl Med 57:634–639CrossRefPubMed Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Ishiwata K, Iwata R, Yanai K (2016) Synthesis and characterization of 18F-interleukin-8 using a cell-free translation system and 4-18F-fluoro-L-proline. J Nucl Med 57:634–639CrossRefPubMed
9.
go back to reference Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Iwata R, Yanai K (2012) Synthesis of [11C]interleukin 8 using a cell-free translation system and L-[11C]methionine. Nucl Med Biol 39:155–160CrossRefPubMed Harada R, Furumoto S, Yoshikawa T, Ishikawa Y, Shibuya K, Okamura N, Iwata R, Yanai K (2012) Synthesis of [11C]interleukin 8 using a cell-free translation system and L-[11C]methionine. Nucl Med Biol 39:155–160CrossRefPubMed
10.
go back to reference Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755CrossRefPubMed Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755CrossRefPubMed
11.
go back to reference Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRefPubMed Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRefPubMed
12.
go back to reference Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500CrossRefPubMed Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500CrossRefPubMed
13.
go back to reference Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367CrossRefPubMed Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367CrossRefPubMed
14.
go back to reference Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418:652–656CrossRefPubMed Ozawa K, Loscha KV, Kuppan KV, Loh CT, Dixon NE, Otting G (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418:652–656CrossRefPubMed
15.
go back to reference Young DD, Young TS, Jahnz M, Ahmad I, Spraggon G, Schultz PG (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50:1894–1900CrossRefPubMedPubMedCentral Young DD, Young TS, Jahnz M, Ahmad I, Spraggon G, Schultz PG (2011) An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50:1894–1900CrossRefPubMedPubMedCentral
16.
go back to reference Tolmachev V, Hofstrom C, Malmberg J et al (2010) HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [99mTc(CO3)]+, and shows improved biodistribution with reduced hepatic radioactivity accumulation. Bioconjug Chem 21:2013–2022CrossRefPubMed Tolmachev V, Hofstrom C, Malmberg J et al (2010) HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [99mTc(CO3)]+, and shows improved biodistribution with reduced hepatic radioactivity accumulation. Bioconjug Chem 21:2013–2022CrossRefPubMed
17.
go back to reference Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374CrossRefPubMed Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374CrossRefPubMed
18.
go back to reference Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K (2018) Practical microscale one-pot radiosynthesis of (18) F-labeled probes. J Labelled Comp Radiopharm 61:540–549CrossRefPubMed Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K (2018) Practical microscale one-pot radiosynthesis of (18) F-labeled probes. J Labelled Comp Radiopharm 61:540–549CrossRefPubMed
19.
go back to reference Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefPubMed Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefPubMed
20.
go back to reference Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137CrossRefPubMed Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137CrossRefPubMed
21.
go back to reference Qi Y, Liu X, Li J, Yao H, Yuan S (2017) Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8:60581–60588PubMedPubMedCentral Qi Y, Liu X, Li J, Yao H, Yuan S (2017) Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8:60581–60588PubMedPubMedCentral
22.
go back to reference Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C, Sabel M, Steiger HJ, Reifenberger G, Beez T, Coenen HH, Floeth FW, Langen KJ (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235CrossRefPubMed Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C, Sabel M, Steiger HJ, Reifenberger G, Beez T, Coenen HH, Floeth FW, Langen KJ (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235CrossRefPubMed
23.
go back to reference Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53:207–214CrossRefPubMed Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53:207–214CrossRefPubMed
24.
go back to reference Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J (2008) [18F]FBEM-Z(HER2:342)-affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018CrossRefPubMed Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J (2008) [18F]FBEM-Z(HER2:342)-affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018CrossRefPubMed
25.
go back to reference Morris O, Fairclough M, Grigg J, et al. (2018) A review of approaches to (18) F radiolabelling affinity peptides and proteins. J Labelled Comp Radiopharm Morris O, Fairclough M, Grigg J, et al. (2018) A review of approaches to (18) F radiolabelling affinity peptides and proteins. J Labelled Comp Radiopharm
26.
go back to reference Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A 107:15039–15044CrossRefPubMedPubMedCentral Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A 107:15039–15044CrossRefPubMedPubMedCentral
27.
go back to reference Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212PubMed Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212PubMed
28.
go back to reference Stahl S, Graslund T, Eriksson Karlstrom A et al (2017) Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35:691–712CrossRefPubMed Stahl S, Graslund T, Eriksson Karlstrom A et al (2017) Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35:691–712CrossRefPubMed
29.
go back to reference Ahlgren S, Orlova A, Wallberg H, Hansson M, Sandstrom M, Lewsley R, Wennborg A, Abrahmsen L, Tolmachev V, Feldwisch J (2010) Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 51:1131–1138CrossRefPubMed Ahlgren S, Orlova A, Wallberg H, Hansson M, Sandstrom M, Lewsley R, Wennborg A, Abrahmsen L, Tolmachev V, Feldwisch J (2010) Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 51:1131–1138CrossRefPubMed
30.
go back to reference Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, Nilsson FY, Wennborg A, Abrahmsen L, Feldwisch J (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186CrossRefPubMed Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, Nilsson FY, Wennborg A, Abrahmsen L, Feldwisch J (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186CrossRefPubMed
Metadata
Title
Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell-Free Protein Synthesis System and O-2-[18F]Fluoroethyl-L-Tyrosine: [18F]FET-HER2 Affibody Molecule
Authors
Ai Yanai
Ryuichi Harada
Ren Iwata
Takeo Yoshikawa
Yoichi Ishikawa
Shozo Furumoto
Takanori Ishida
Kazuhiko Yanai
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1266-z

Other articles of this Issue 3/2019

Molecular Imaging and Biology 3/2019 Go to the issue