Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2019

01-02-2019 | Research Article

The Value of In Vitro Binding as Predictor of In Vivo Results: A Case for [18F]FDDNP PET

Authors: Graham B. Cole, Nagichettiar Satyamurthy, Jie Liu, Koon-Pong Wong, Gary W. Small, Sung-Cheng Huang, Janez Košmrlj, Jorge R. Barrio, Andrej Petrič

Published in: Molecular Imaging and Biology | Issue 1/2019

Login to get access

Abstract

Purpose

Caution is warranted when in vitro results of biomarkers labeled with tritium were perfunctorily used to criticize in vivo data and conclusions derived with the same tracers labeled with positron emitters and positron emission tomography (PET). This concept is illustrated herein with the PET utilization of [18F]FDDNP, a biomarker used for in vivo visualization of β-amyloid and tau protein neuroaggregates in humans, later contradicted by in vitro data reported with [3H]FDDNP. In this investigation, we analyze the multiple factors involved in the experimental design of the [3H]FDDNP in vitro study that led to the erroneous interpretation of results.

Procedure

The present work describes full details on the synthesis, characterization, purity, and kinetics of radiolytic stability of [3H]FDDNP. The optimal in vitro conditions for detecting tau and β-amyloid protein aggregates using macroscopic and microscopic autoradiography with both [18F]FDDNP and [3H]FDDNP are also presented. Macroscopic autoradiography determinations were performed with [3H]FDDNP of verified purity using established methods described previously in the literature.

Results

The autoradiographic results using phosphate buffered saline (PBS) with less than 1 % EtOH and pure, freshly prepared [3H]FDDNP compared with the earlier reported data using [3H]FDDNP of undetermined purity and PBS in 10 % EtOH demonstrate the critical importance of rigorous experimental design for meaningful in vitro determinations. [18F]FDDNP binding to both amyloid plaques and neurofibrillary tangles was confirmed by amyloid and tau immunohistochemical stains of adjacent tissues.

Conclusions

This work illustrates the sensitivity of in vitro techniques to various experimental conditions and underscores that conclusions obtained from translational in vitro to in vivo determinations must always be performed with extreme care to avoid wrong interpretations that can be perpetuated and assumed without further analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chronback LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52:281–302CrossRef Chronback LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52:281–302CrossRef
2.
go back to reference Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, Barrio JR (2010) Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci U S A 107:6222–6227CrossRefPubMedPubMedCentral Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, Barrio JR (2010) Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci U S A 107:6222–6227CrossRefPubMedPubMedCentral
3.
go back to reference Thompson PW, Ye L, Morgenstern JL, Sue L, Beach TG, Judd DJ, Shipley NJ, Libri V, Lockhart A (2009) Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem 109:623–630CrossRefPubMedPubMedCentral Thompson PW, Ye L, Morgenstern JL, Sue L, Beach TG, Judd DJ, Shipley NJ, Libri V, Lockhart A (2009) Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem 109:623–630CrossRefPubMedPubMedCentral
4.
go back to reference Lockhart A, Lamb JR, Osredkar T et al (2007) PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis. Brain 1(30):2607–2615CrossRef Lockhart A, Lamb JR, Osredkar T et al (2007) PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis. Brain 1(30):2607–2615CrossRef
5.
go back to reference Ye L, Morgenstern JL, Gee AD, Hong G, Brown J, Lockhart A (2005) Delineation of positron emission tomography imaging agent binding sites on β-amyloid peptide fibrils. J Biol Chem 280:23599–23604CrossRefPubMed Ye L, Morgenstern JL, Gee AD, Hong G, Brown J, Lockhart A (2005) Delineation of positron emission tomography imaging agent binding sites on β-amyloid peptide fibrils. J Biol Chem 280:23599–23604CrossRefPubMed
6.
go back to reference Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189CrossRefPubMed Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci 21:RC189CrossRefPubMed
7.
go back to reference Agdeppa ED, Kepe V, Petric A et al (2003) In vivo detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile. Neuroscience 117:723–730CrossRefPubMed Agdeppa ED, Kepe V, Petric A et al (2003) In vivo detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile. Neuroscience 117:723–730CrossRefPubMed
8.
go back to reference Bancroft JD, Stevens A (eds) (1990) Theory and practice of histological techniques, 3rd edn. Churchill Livingstone, Edinburgh Bancroft JD, Stevens A (eds) (1990) Theory and practice of histological techniques, 3rd edn. Churchill Livingstone, Edinburgh
9.
go back to reference Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663CrossRefPubMed Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663CrossRefPubMed
10.
go back to reference Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, Mazziotta JC, Mendez MF, Donoghue N, Small GW, Barrio JR (2013) PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis 36:145–153CrossRefPubMedPubMedCentral Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, Mazziotta JC, Mendez MF, Donoghue N, Small GW, Barrio JR (2013) PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis 36:145–153CrossRefPubMedPubMedCentral
11.
go back to reference Smid LM, Kepe V, Vinters HV, Bresjanac M, Toyokuni T, Satyamurthy N, Wong KP, Huang SC, Silverman DH, Miller K, Small GW, Barrio JR (2013) Postmortem 3-D brain hemisphere cortical tau and amyloid-β pathology mapping and quantification as a validation method of neuropathology imaging. J Alzheimers Dis 36:261–274CrossRefPubMedPubMedCentral Smid LM, Kepe V, Vinters HV, Bresjanac M, Toyokuni T, Satyamurthy N, Wong KP, Huang SC, Silverman DH, Miller K, Small GW, Barrio JR (2013) Postmortem 3-D brain hemisphere cortical tau and amyloid-β pathology mapping and quantification as a validation method of neuropathology imaging. J Alzheimers Dis 36:261–274CrossRefPubMedPubMedCentral
12.
go back to reference Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, Giza CC, Fitzsimmons RP, Omalu B, Bailes J, Kepe V (2015) In vivo characterization of chronic traumatic encephalopathy (CTE) using [F-18]FDDNP-PET brain imaging. Proc Natl Acad Sci USA 112:E2039–E2047CrossRefPubMed Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, Giza CC, Fitzsimmons RP, Omalu B, Bailes J, Kepe V (2015) In vivo characterization of chronic traumatic encephalopathy (CTE) using [F-18]FDDNP-PET brain imaging. Proc Natl Acad Sci USA 112:E2039–E2047CrossRefPubMed
13.
go back to reference Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319CrossRefPubMed Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319CrossRefPubMed
14.
go back to reference Verhoeff NPLG, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer’s disease β-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595PubMed Verhoeff NPLG, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer’s disease β-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595PubMed
15.
go back to reference Bayly RJ, Evans EA (1966) Stability and storage of compounds labelled with radioisotopes. J Label Compd 2:1–34CrossRef Bayly RJ, Evans EA (1966) Stability and storage of compounds labelled with radioisotopes. J Label Compd 2:1–34CrossRef
16.
go back to reference Liu J, Kepe V, Žabjek A, Petrič A, Padgett HC, Satyamurthy N, Barrio JR (2007) High-yield, automated radiosynthesis of 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) ready for animal or human administration. Mol Imaging Biol 9:6–16CrossRefPubMed Liu J, Kepe V, Žabjek A, Petrič A, Padgett HC, Satyamurthy N, Barrio JR (2007) High-yield, automated radiosynthesis of 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) ready for animal or human administration. Mol Imaging Biol 9:6–16CrossRefPubMed
17.
18.
go back to reference Voges R, Heys JR, Moenius T (2009) Preparation of compounds labeled with tritium and Carbon-14. Wiley, ChichesterCrossRef Voges R, Heys JR, Moenius T (2009) Preparation of compounds labeled with tritium and Carbon-14. Wiley, ChichesterCrossRef
19.
go back to reference Tkachenko SE, Karpov NA, Fedoseev VM (2000) Autoradiolysis of labeled organic compounds. Radiochemistry 42:211–227 Tkachenko SE, Karpov NA, Fedoseev VM (2000) Autoradiolysis of labeled organic compounds. Radiochemistry 42:211–227
20.
go back to reference Waterfield WR, Spanner JA, Stanford FG (1968) Tritium exchange from compounds in dilute aqueous solutions. Nature 218:472–473CrossRefPubMed Waterfield WR, Spanner JA, Stanford FG (1968) Tritium exchange from compounds in dilute aqueous solutions. Nature 218:472–473CrossRefPubMed
21.
go back to reference Jacobson A, Petrič A, Hogenkamp D et al (1996) 1,1-Dicyano-2-[6-(dimethylamino)naphthalene-2-yl]propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J Am Chem Soc 118:5572–5579CrossRef Jacobson A, Petrič A, Hogenkamp D et al (1996) 1,1-Dicyano-2-[6-(dimethylamino)naphthalene-2-yl]propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J Am Chem Soc 118:5572–5579CrossRef
22.
go back to reference Petric A, Johnson SA, Pham HV, Li Y, Ceh S, Golobic A, Agdeppa ED, Timbol G, Liu J, Keum G, Satyamurthy N, Kepe V, Houk KN, Barrio JR (2012) Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities. Proc Natl Acad Sci U S A 109:16492–16497CrossRefPubMedPubMedCentral Petric A, Johnson SA, Pham HV, Li Y, Ceh S, Golobic A, Agdeppa ED, Timbol G, Liu J, Keum G, Satyamurthy N, Kepe V, Houk KN, Barrio JR (2012) Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities. Proc Natl Acad Sci U S A 109:16492–16497CrossRefPubMedPubMedCentral
23.
go back to reference Kung MP, Hou C, Zhuang ZP, Skovronsky D, Kung HF (2004) Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res 1025:98–105CrossRefPubMed Kung MP, Hou C, Zhuang ZP, Skovronsky D, Kung HF (2004) Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res 1025:98–105CrossRefPubMed
24.
go back to reference Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 25:1528–1547CrossRefPubMed Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 25:1528–1547CrossRefPubMed
25.
go back to reference Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840CrossRefPubMed Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840CrossRefPubMed
26.
go back to reference Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670CrossRefPubMed Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670CrossRefPubMed
27.
go back to reference Shogi-Jadid K, Barrio JR, Kepe V et al (2005) Imaging β-amyloid fibrils in Alzheimer’s disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 32:337–351CrossRef Shogi-Jadid K, Barrio JR, Kepe V et al (2005) Imaging β-amyloid fibrils in Alzheimer’s disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 32:337–351CrossRef
28.
go back to reference Shogi-Jadid K, Barrio JR, Kepe V et al (2006) Exploring a mathematical model for the kinetics of β-amyloid molecular imaging probes through a critical analysis of plaque pathology. Mol Imaging Biol 8:151–162CrossRef Shogi-Jadid K, Barrio JR, Kepe V et al (2006) Exploring a mathematical model for the kinetics of β-amyloid molecular imaging probes through a critical analysis of plaque pathology. Mol Imaging Biol 8:151–162CrossRef
29.
go back to reference Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9:666–676CrossRefPubMed Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9:666–676CrossRefPubMed
30.
go back to reference Vermeiren C, Mercier J, Viot D, Mairet-Coello G, Hannestad J, Courade JP, Citron M, Gillard M (2015) T807, a reported selective tau tracer, binds with nanomolar affinity to monoamine oxidase a. Alzheimer’s Dement Suppl 11:P283CrossRef Vermeiren C, Mercier J, Viot D, Mairet-Coello G, Hannestad J, Courade JP, Citron M, Gillard M (2015) T807, a reported selective tau tracer, binds with nanomolar affinity to monoamine oxidase a. Alzheimer’s Dement Suppl 11:P283CrossRef
31.
go back to reference Mitsis EM, Riggio S, Kostakoglu L, Dickstein DL, Machac J, Delman B, Goldstein M, Jennings D, D’Antonio E, Martin J, Naidich TP, Aloysi A, Fernandez C, Seibyl J, DeKosky ST, Elder GA, Marek K, Gordon W, Hof PR, Sano M, Gandy S (2014) Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry 4:e441CrossRefPubMedPubMedCentral Mitsis EM, Riggio S, Kostakoglu L, Dickstein DL, Machac J, Delman B, Goldstein M, Jennings D, D’Antonio E, Martin J, Naidich TP, Aloysi A, Fernandez C, Seibyl J, DeKosky ST, Elder GA, Marek K, Gordon W, Hof PR, Sano M, Gandy S (2014) Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry 4:e441CrossRefPubMedPubMedCentral
32.
go back to reference Gandy S, DeKosky ST (2014) [18F]-T807 tauopathy PET imaging in chronic traumatic encephalopathy. F1000 Res 3:229CrossRef Gandy S, DeKosky ST (2014) [18F]-T807 tauopathy PET imaging in chronic traumatic encephalopathy. F1000 Res 3:229CrossRef
34.
go back to reference Frey KA, Albin RL (1997) Neuroanatomical methods receptor binding techniques. Current protocols in neuroscience. Wiley, New York, pp 1.4.1–1.4.14 Frey KA, Albin RL (1997) Neuroanatomical methods receptor binding techniques. Current protocols in neuroscience. Wiley, New York, pp 1.4.1–1.4.14
35.
go back to reference Barrio JR (2004) The molecular basis of disease. In: Phelps ME (ed) PET—molecular imaging and its biological applications. Springer, New York, pp 270–320 Barrio JR (2004) The molecular basis of disease. In: Phelps ME (ed) PET—molecular imaging and its biological applications. Springer, New York, pp 270–320
36.
go back to reference Hallberg O, Johansson O (2009) Sleep on the right side—get cancer on the left? Pathophysiology 17:157–160CrossRefPubMed Hallberg O, Johansson O (2009) Sleep on the right side—get cancer on the left? Pathophysiology 17:157–160CrossRefPubMed
37.
go back to reference Hallberg O, Johansson O (2002) Cancer trends during the 20th century. ACNEM 21:1–6 Hallberg O, Johansson O (2002) Cancer trends during the 20th century. ACNEM 21:1–6
38.
go back to reference Quinn GE, Shin CH, Maguire MG, Stone RA (1999) Myopia and ambient lighting at night. Nature 399:113–114CrossRefPubMed Quinn GE, Shin CH, Maguire MG, Stone RA (1999) Myopia and ambient lighting at night. Nature 399:113–114CrossRefPubMed
39.
go back to reference Wakefield AJ, Murch SH, Anthony A et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351:637–641 Retracted in 2010CrossRefPubMed Wakefield AJ, Murch SH, Anthony A et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351:637–641 Retracted in 2010CrossRefPubMed
40.
go back to reference Agdeppa ED, Kepe V, Shoghi-Jadid K et al (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol 5:407–417CrossRef Agdeppa ED, Kepe V, Shoghi-Jadid K et al (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol 5:407–417CrossRef
Metadata
Title
The Value of In Vitro Binding as Predictor of In Vivo Results: A Case for [18F]FDDNP PET
Authors
Graham B. Cole
Nagichettiar Satyamurthy
Jie Liu
Koon-Pong Wong
Gary W. Small
Sung-Cheng Huang
Janez Košmrlj
Jorge R. Barrio
Andrej Petrič
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 1/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1210-2

Other articles of this Issue 1/2019

Molecular Imaging and Biology 1/2019 Go to the issue