Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2018

Open Access 01-12-2018 | Research Article

Noise-Induced Variability of Immuno-PET with Zirconium-89-Labeled Antibodies: an Analysis Based on Count-Reduced Clinical Images

Authors: Yvonne W. S. Jauw, Dennis F. Heijtel, Josée M. Zijlstra, Otto S. Hoekstra, Henrica C. W. de Vet, Danielle J. Vugts, Henk M. Verheul, Ronald Boellaard, Sonja Zweegman, Guus A. M. S. van Dongen, C. Willemien Menke-van der Houven van Oordt, Adriaan A. Lammertsma, Marc C. Huisman

Published in: Molecular Imaging and Biology | Issue 6/2018

Login to get access

Abstract

Purpose

Positron emission tomography (PET) with Zirconium-89 (Zr-89)-labeled antibodies can be used for in vivo quantification of antibody uptake. Knowledge about measurement variability is required to ensure correct interpretation. However, no clinical studies have been reported on measurement variability of Zr-89 immuno-PET. As variability due to low signal-to-noise is part of the total measurement variability, the aim of this study was to assess noise-induced variability of Zr-89 -immuno-PET using count-reduced clinical images.

Procedures

Data were acquired from three previously reported clinical studies with [89Zr]antiCD20 (74 MBq, n = 7), [89Zr]antiEGFR (37 MBq, n = 7), and [89Zr]antiCD44 (37 MBq, n = 13), with imaging obtained 1 to 6 days post injection (D0–D6). Volumes of interest (VOIs) were manually delineated for liver, spleen, kidney, lung, brain, and tumor. For blood pool and bone marrow, fixed-size VOIs were used. Original PET list mode data were split and reconstructed, resulting in two count-reduced images at 50 % of the original injected dose (e.g., 37 MBq74inj).
Repeatability coefficients (RC) were obtained from Bland-Altman analysis on standardized uptake values (SUV) derived from VOIs applied to these images.

Results

The RC for the combined manually delineated organs for [89Zr] antiCD20 (37 MBq74inj) increased from D0 to D6 and was less than 6 % at all time points. Blood pool and bone marrow had higher RC, up to 43 % for 37 MBq74inj at D6. For tumor, the RC was up to 42 % for [89Zr]antiCD20 (37 MBq74inj). For [89Zr]antiCD20, (18 MBq74inj), [89Zr]antiEGFR (18 MBq37inj), and [89Zr]antiCD44 (18 MBq37inj), measurement variability was independent of the investigated antibody.

Conclusions

Based on this study, noise-induced variability results in a RC for Zr-89-immuno-PET (37 MBq) around 6 % for manually delineated organs combined, increasing up to 43 % at D6 for blood pool and bone marrow, assuming similar biodistribution of antibodies. The signal-to-noise ratio leads to tumor RC up to 42 %.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lamberts LE, Williams SP, Terwisscha van Scheltinga AG, et al (2015) Antibody positron emission tomography imaging in anticancer drug development. J Clin Oncol 33:1491–1504CrossRef Lamberts LE, Williams SP, Terwisscha van Scheltinga AG, et al (2015) Antibody positron emission tomography imaging in anticancer drug development. J Clin Oncol 33:1491–1504CrossRef
2.
go back to reference Pandit-Taskar N, O’Donoghue JA, Beylergil V, et al (2014) 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41:2093–2105CrossRef Pandit-Taskar N, O’Donoghue JA, Beylergil V, et al (2014) 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41:2093–2105CrossRef
3.
go back to reference Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS et al (2016) Immuno-positron emission tomography with zirconium-89-labelled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol 7:131CrossRef Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS et al (2016) Immuno-positron emission tomography with zirconium-89-labelled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol 7:131CrossRef
4.
go back to reference Armstrong IS, James JM, Williams HA, et al (2015) The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18F-FDG PET. Nucl Med Commun 36:728–737CrossRef Armstrong IS, James JM, Williams HA, et al (2015) The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18F-FDG PET. Nucl Med Commun 36:728–737CrossRef
5.
go back to reference Bruijnen S, Tsang-A-Sjoe M, Raterman H, et al (2016) B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24 weeks after initiation of rituximab treatment in rheumatoid arthritis patients. Arthritis Res Ther 18:266 Bruijnen S, Tsang-A-Sjoe M, Raterman H, et al (2016) B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24 weeks after initiation of rituximab treatment in rheumatoid arthritis patients. Arthritis Res Ther 18:266
7.
go back to reference Jauw YWS, Zijlstra JM, de Jong D, et al (2017) Performance of 89Zr-labelled-rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One 12:e0169828CrossRef Jauw YWS, Zijlstra JM, de Jong D, et al (2017) Performance of 89Zr-labelled-rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One 12:e0169828CrossRef
8.
go back to reference Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, et al (2015) 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget 30:30384–30393 Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, et al (2015) 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget 30:30384–30393
9.
go back to reference Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, et al (2016) First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumours. Oncotarget 43:80046–80058 Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, et al (2016) First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumours. Oncotarget 43:80046–80058
10.
go back to reference Makris NE, Boellaard R, Visser EP, et al (2014) Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med 55:264–267CrossRef Makris NE, Boellaard R, Visser EP, et al (2014) Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med 55:264–267CrossRef
11.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJ, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354CrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354CrossRef
12.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
13.
go back to reference Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med 25:141–151CrossRef Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med 25:141–151CrossRef
14.
go back to reference Nunnally JC (1994) Psychometric theory, 3rd edn. McGraw-Hill, New York Nunnally JC (1994) Psychometric theory, 3rd edn. McGraw-Hill, New York
15.
go back to reference Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:Suppl 1:11S–20SCrossRef Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:Suppl 1:11S–20SCrossRef
16.
go back to reference Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86CrossRef Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86CrossRef
17.
go back to reference Klettering P, Maaß C, Reske S, et al (2015) Physiologically based pharmacokinetic modeling is essential in 90Y-labelled anti-CD66 radioimmunotherapy. PLoS One 5:e0127934CrossRef Klettering P, Maaß C, Reske S, et al (2015) Physiologically based pharmacokinetic modeling is essential in 90Y-labelled anti-CD66 radioimmunotherapy. PLoS One 5:e0127934CrossRef
18.
go back to reference Jauw Y, Hoekstra O, Mulder E, et al (2016) Inter-observer agreement for tumour uptake quantification of 89Zr-labelled anti-CD20 antibodies with PET. J Nucl Med 57(Suppl 2):1412 Jauw Y, Hoekstra O, Mulder E, et al (2016) Inter-observer agreement for tumour uptake quantification of 89Zr-labelled anti-CD20 antibodies with PET. J Nucl Med 57(Suppl 2):1412
20.
go back to reference Kramer GM, Frings V, Hoetjes N, et al (2016) Repeatability of quantitative whole-body 18F-FDG PET/CT uptake measures as function of uptake interval and lesion selection in non-small cell lung cancer patients. J Nucl Med 30:1343–1349CrossRef Kramer GM, Frings V, Hoetjes N, et al (2016) Repeatability of quantitative whole-body 18F-FDG PET/CT uptake measures as function of uptake interval and lesion selection in non-small cell lung cancer patients. J Nucl Med 30:1343–1349CrossRef
21.
go back to reference Hoekstra CJ, Hoekstra OH, Stroobants SG, et al (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 43:1304–1309 Hoekstra CJ, Hoekstra OH, Stroobants SG, et al (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 43:1304–1309
22.
go back to reference Gaykema SB, Schroder CP, Vitfell-Rasmussen J, et al (2014) 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Can Res 20:3945–3954CrossRef Gaykema SB, Schroder CP, Vitfell-Rasmussen J, et al (2014) 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Can Res 20:3945–3954CrossRef
23.
go back to reference Lartizien C, Aubin J-B, Buvat I (2010) Comparison of bootstrap resampling methods for 3-D PET imaging. IEEE Trans Med Img 29:1442–1454CrossRef Lartizien C, Aubin J-B, Buvat I (2010) Comparison of bootstrap resampling methods for 3-D PET imaging. IEEE Trans Med Img 29:1442–1454CrossRef
24.
go back to reference Markiewicz PJ, Reader AJ, Matthews JC (2015) Assessment of bootstrap resampling performance of PET data. Phys Med Biol 60:279–299CrossRef Markiewicz PJ, Reader AJ, Matthews JC (2015) Assessment of bootstrap resampling performance of PET data. Phys Med Biol 60:279–299CrossRef
Metadata
Title
Noise-Induced Variability of Immuno-PET with Zirconium-89-Labeled Antibodies: an Analysis Based on Count-Reduced Clinical Images
Authors
Yvonne W. S. Jauw
Dennis F. Heijtel
Josée M. Zijlstra
Otto S. Hoekstra
Henrica C. W. de Vet
Danielle J. Vugts
Henk M. Verheul
Ronald Boellaard
Sonja Zweegman
Guus A. M. S. van Dongen
C. Willemien Menke-van der Houven van Oordt
Adriaan A. Lammertsma
Marc C. Huisman
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 6/2018
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1200-4

Other articles of this Issue 6/2018

Molecular Imaging and Biology 6/2018 Go to the issue