Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2018

01-06-2018 | Review Article

Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery

Authors: Stephanie J. Blocker, Anthony F. Shields

Published in: Molecular Imaging and Biology | Issue 3/2018

Login to get access

Abstract

Molecular imaging is a vital tool to non-invasively measure nanoparticle delivery to solid tumors. Despite the myriad of nanoparticles studied for cancer, successful applications of nanoparticles in humans is limited by inconsistent and ineffective delivery. Successful nanoparticle delivery in preclinical models is often attributed to enhanced permeability and retention (EPR)—a set of conditions that is heterogeneous and transient in patients. Thus, researchers are evaluating therapeutic strategies to modify nanoparticle delivery, particularly treatments which have demonstrated effects on EPR conditions. Imaging nanoparticle distribution provides a means to measure the effects of therapeutic intervention on nanoparticle delivery to solid tumors. This review focuses on the utility of imaging to measure treatment-induced changes in nanoparticle delivery to tumors and provides preclinical examples studying a broad range of therapeutic interventions.
Literature
1.
go back to reference Sagnella SM, McCarroll JA, Kavallaris M (2014) Drug delivery: beyond active tumour targeting. Nanomedicine 10:1131–1137CrossRefPubMed Sagnella SM, McCarroll JA, Kavallaris M (2014) Drug delivery: beyond active tumour targeting. Nanomedicine 10:1131–1137CrossRefPubMed
3.
go back to reference Toussaint M, Pinel S, Auger F et al (2017) Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 7:436–451CrossRefPubMedPubMedCentral Toussaint M, Pinel S, Auger F et al (2017) Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics 7:436–451CrossRefPubMedPubMedCentral
4.
go back to reference Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med:7–314ra183 Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med:7–314ra183
5.
go back to reference Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral
6.
go back to reference Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed
7.
go back to reference Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268CrossRefPubMed Ren L, Chen S, Li H et al (2016) MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 35:260–268CrossRefPubMed
9.
go back to reference Funkhouser J (2002) Reinventing pharma: the Theranostic revolution. Curr Drug Discov 2:17–19 Funkhouser J (2002) Reinventing pharma: the Theranostic revolution. Curr Drug Discov 2:17–19
10.
11.
go back to reference Zhou H, Qian W, Uckun FM et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9:7976–7991CrossRefPubMedPubMedCentral Zhou H, Qian W, Uckun FM et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9:7976–7991CrossRefPubMedPubMedCentral
12.
go back to reference Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890CrossRefPubMedPubMedCentral Minowa T, Kawano K, Kuribayashi H et al (2009) Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI. Br J Cancer 101:1884–1890CrossRefPubMedPubMedCentral
13.
go back to reference Geretti E, Leonard SC, Dumont N et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14:2060–2071CrossRefPubMed Geretti E, Leonard SC, Dumont N et al (2015) Cyclophosphamide-mediated tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther 14:2060–2071CrossRefPubMed
14.
go back to reference Doi Y, Abu Lila AS, Matsumoto H et al (2016) Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 11:5573–5582CrossRefPubMedPubMedCentral Doi Y, Abu Lila AS, Matsumoto H et al (2016) Improvement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing. Int J Nanomedicine 11:5573–5582CrossRefPubMedPubMedCentral
15.
go back to reference Nakamura K, Abu Lila AS, Matsunaga M et al (2011) A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 19:2040–2047CrossRefPubMedPubMedCentral Nakamura K, Abu Lila AS, Matsunaga M et al (2011) A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 19:2040–2047CrossRefPubMedPubMedCentral
16.
go back to reference Moding EJ, Clark DP, Qi Y et al (2013) Dual-energy micro-computed tomography imaging of radiation-induced vascular changes in primary mouse sarcomas. Int J Radiat Oncol Biol Phys 85:1353–1359CrossRefPubMed Moding EJ, Clark DP, Qi Y et al (2013) Dual-energy micro-computed tomography imaging of radiation-induced vascular changes in primary mouse sarcomas. Int J Radiat Oncol Biol Phys 85:1353–1359CrossRefPubMed
17.
go back to reference Matteucci ML, Anyarambhatla G, Rosner G et al (2000) Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 6:3748–3755PubMed Matteucci ML, Anyarambhatla G, Rosner G et al (2000) Hyperthermia increases accumulation of technetium-99m-labeled liposomes in feline sarcomas. Clin Cancer Res 6:3748–3755PubMed
18.
go back to reference Kleiter MM, Yu D, Mohammadian LA et al (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807CrossRefPubMed Kleiter MM, Yu D, Mohammadian LA et al (2006) A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 12:6800–6807CrossRefPubMed
19.
go back to reference Head HW, Dodd GD 3rd, Bao A et al (2010) Combination radiofrequency ablation and intravenous radiolabeled liposomal doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology 255:405–414CrossRefPubMedPubMedCentral Head HW, Dodd GD 3rd, Bao A et al (2010) Combination radiofrequency ablation and intravenous radiolabeled liposomal doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology 255:405–414CrossRefPubMedPubMedCentral
20.
go back to reference Zheng X, Goins BA, Cameron IL et al (2011) Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 67:173–182CrossRefPubMed Zheng X, Goins BA, Cameron IL et al (2011) Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 67:173–182CrossRefPubMed
21.
go back to reference Lammers T, Subr V, Peschke P et al (2008) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–910CrossRefPubMedPubMedCentral Lammers T, Subr V, Peschke P et al (2008) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–910CrossRefPubMedPubMedCentral
22.
go back to reference Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720CrossRefPubMed Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720CrossRefPubMed
23.
go back to reference Daldrup-Link HE, Mohanty S, Ansari C et al (2016) Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 1:e85608CrossRefPubMedPubMedCentral Daldrup-Link HE, Mohanty S, Ansari C et al (2016) Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 1:e85608CrossRefPubMedPubMedCentral
24.
go back to reference Kumar V, Boucher Y, Liu H et al (2016) Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9:431–437CrossRefPubMedPubMedCentral Kumar V, Boucher Y, Liu H et al (2016) Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9:431–437CrossRefPubMedPubMedCentral
25.
go back to reference Appelbe OK, Zhang Q, Pelizzari CA et al (2016) Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol Pharm 13:3457–3467CrossRefPubMedPubMedCentral Appelbe OK, Zhang Q, Pelizzari CA et al (2016) Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol Pharm 13:3457–3467CrossRefPubMedPubMedCentral
26.
go back to reference Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327CrossRefPubMed Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327CrossRefPubMed
27.
go back to reference Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm Zhao Y, Houston ZH, Simpson JD et al (2017) Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm
28.
go back to reference Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMed Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMed
29.
go back to reference Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612CrossRefPubMedPubMedCentral Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612CrossRefPubMedPubMedCentral
30.
go back to reference Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554CrossRefPubMedPubMedCentral Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554CrossRefPubMedPubMedCentral
31.
go back to reference Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed
32.
go back to reference Jung B, Shim MK, Park MJ et al (2017) Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int J Pharm 520:111–118CrossRefPubMed Jung B, Shim MK, Park MJ et al (2017) Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. Int J Pharm 520:111–118CrossRefPubMed
33.
go back to reference Gao W, Wang Z, Lv L et al (2016) Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:1131–1144CrossRefPubMedPubMedCentral Gao W, Wang Z, Lv L et al (2016) Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:1131–1144CrossRefPubMedPubMedCentral
34.
35.
go back to reference Lv S, Li M, Tang Z et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342CrossRefPubMed Lv S, Li M, Tang Z et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342CrossRefPubMed
36.
go back to reference Danhier F (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121CrossRefPubMed Danhier F (2016) To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–121CrossRefPubMed
37.
go back to reference Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766CrossRefPubMed Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766CrossRefPubMed
38.
go back to reference Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465CrossRefPubMedPubMedCentral Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465CrossRefPubMedPubMedCentral
39.
go back to reference Yokoi K, Kojic M, Milosevic M et al (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246CrossRefPubMedPubMedCentral Yokoi K, Kojic M, Milosevic M et al (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246CrossRefPubMedPubMedCentral
40.
go back to reference Yokoi K, Chan D, Kojic M et al (2015) Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release 217:293–299CrossRefPubMedPubMedCentral Yokoi K, Chan D, Kojic M et al (2015) Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J Control Release 217:293–299CrossRefPubMedPubMedCentral
41.
go back to reference Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020CrossRefPubMedPubMedCentral Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5:1007–1020CrossRefPubMedPubMedCentral
42.
go back to reference Kjellman P, in ‘t Zandt R, Fredriksson S et al (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095CrossRefPubMed Kjellman P, in ‘t Zandt R, Fredriksson S et al (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095CrossRefPubMed
43.
go back to reference Song J, Yang X, Yang Z et al (2017) Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano Song J, Yang X, Yang Z et al (2017) Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano
44.
45.
go back to reference Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514CrossRefPubMed Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514CrossRefPubMed
46.
go back to reference Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMed Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMed
47.
go back to reference Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799CrossRefPubMed Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799CrossRefPubMed
48.
go back to reference Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234CrossRefPubMed Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234CrossRefPubMed
49.
go back to reference Zalcman G, Mazieres J, Margery J et al (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387:1405–1414CrossRefPubMed Zalcman G, Mazieres J, Margery J et al (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387:1405–1414CrossRefPubMed
50.
go back to reference Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676CrossRefPubMed Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676CrossRefPubMed
51.
go back to reference Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989CrossRefPubMed Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989CrossRefPubMed
52.
go back to reference Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950CrossRefPubMed Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950CrossRefPubMed
53.
go back to reference Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482CrossRefPubMedPubMedCentral Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482CrossRefPubMedPubMedCentral
54.
go back to reference Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344CrossRefPubMed Dreher MR, Liu W, Michelich CR et al (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344CrossRefPubMed
57.
go back to reference Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112CrossRefPubMedPubMedCentral Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112CrossRefPubMedPubMedCentral
58.
go back to reference Hylander BL, Sen A, Beachy SH et al (2015) Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 217:160–169CrossRefPubMedPubMedCentral Hylander BL, Sen A, Beachy SH et al (2015) Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 217:160–169CrossRefPubMedPubMedCentral
59.
go back to reference Lu D, Wientjes MG, Lu Z et al (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322:80–88CrossRefPubMed Lu D, Wientjes MG, Lu Z et al (2007) Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 322:80–88CrossRefPubMed
60.
go back to reference Wang J, Lu Z, Wang J et al (2015) Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors. J Control Release 216:103–110CrossRefPubMedPubMedCentral Wang J, Lu Z, Wang J et al (2015) Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors. J Control Release 216:103–110CrossRefPubMedPubMedCentral
61.
go back to reference Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–504CrossRefPubMed Violette S, Poulain L, Dussaulx E et al (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98:498–504CrossRefPubMed
62.
go back to reference Stapleton S, Jaffray D, Milosevic M (2016) Radiation effects on the tumor microenvironment: implications for nanomedicine delivery. Adv Drug Deliv Rev. Stapleton S, Jaffray D, Milosevic M (2016) Radiation effects on the tumor microenvironment: implications for nanomedicine delivery. Adv Drug Deliv Rev.
63.
go back to reference Davies Cde L, Lundstrom LM, Frengen J et al (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res 64:547–553CrossRefPubMed Davies Cde L, Lundstrom LM, Frengen J et al (2004) Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res 64:547–553CrossRefPubMed
65.
go back to reference Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–744CrossRefPubMed Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–744CrossRefPubMed
66.
go back to reference Ware MJ, Krzykawska-Serda M, Chak-Shing Ho J et al (2017) Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci Rep 7:43961CrossRefPubMedPubMedCentral Ware MJ, Krzykawska-Serda M, Chak-Shing Ho J et al (2017) Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci Rep 7:43961CrossRefPubMedPubMedCentral
67.
go back to reference McGahan JP, Brock JM, Tesluk H et al (1992) Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297CrossRefPubMed McGahan JP, Brock JM, Tesluk H et al (1992) Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297CrossRefPubMed
68.
go back to reference Kirui DK, Mai J, Palange AL et al (2014) Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors. PLoS One 9:e86489CrossRefPubMedPubMedCentral Kirui DK, Mai J, Palange AL et al (2014) Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors. PLoS One 9:e86489CrossRefPubMedPubMedCentral
69.
go back to reference Kirui DK, Koay EJ, Guo X et al (2014) Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 10:1487–1496CrossRefPubMed Kirui DK, Koay EJ, Guo X et al (2014) Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 10:1487–1496CrossRefPubMed
70.
go back to reference Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032PubMed Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032PubMed
71.
go back to reference Huang SK, Stauffer PR, Hong K et al (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191PubMed Huang SK, Stauffer PR, Hong K et al (1994) Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res 54:2186–2191PubMed
72.
go back to reference Li L, ten Hagen TL, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137CrossRefPubMed Li L, ten Hagen TL, Bolkestein M et al (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 167:130–137CrossRefPubMed
73.
go back to reference Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed
74.
go back to reference Diop-Frimpong B, Chauhan VP, Krane S et al (2011) Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A 108:2909–2914CrossRefPubMedPubMedCentral Diop-Frimpong B, Chauhan VP, Krane S et al (2011) Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A 108:2909–2914CrossRefPubMedPubMedCentral
75.
go back to reference Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429CrossRefPubMedPubMedCentral Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429CrossRefPubMedPubMedCentral
Metadata
Title
Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery
Authors
Stephanie J. Blocker
Anthony F. Shields
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2018
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-017-1142-2

Other articles of this Issue 3/2018

Molecular Imaging and Biology 3/2018 Go to the issue