Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2014

01-06-2014 | Research Article

Differences in Transport Mechanisms of trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Inflammation, Prostate Cancer, and Glioma Cells: Comparison with l-[Methyl-11C]Methionine and 2-Deoxy-2-[18F]Fluoro-d-Glucose

Authors: Shuntaro Oka, Hiroyuki Okudaira, Masahiro Ono, David M. Schuster, Mark M. Goodman, Keiichi Kawai, Yoshifumi Shirakami

Published in: Molecular Imaging and Biology | Issue 3/2014

Login to get access

Abstract

Purpose

We aimed to elucidate trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid (anti-[18F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of l-[methyl-11C]methionine ([11C]Met) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG).

Procedures

Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells.

Results

Anti-[14C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [14C]FDG. Over half of anti-[14C]FACBC uptake by T/B and tumor cells was mediated by Na+-dependent amino acid transporters (system ASC), whereas most [14C]Met transport in all cells was mediated by Na+-independent carriers (system L).

Conclusions

The low anti-[18F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[18F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).
Appendix
Available only for authorised users
Literature
1.
go back to reference Fanti S, Franchi R, Battista G et al (2005) PET and PET-CT. State of the art and future prospects. Radiol Med 110:1–15PubMed Fanti S, Franchi R, Battista G et al (2005) PET and PET-CT. State of the art and future prospects. Radiol Med 110:1–15PubMed
2.
go back to reference Singhal T, Narayanan TK, Jain V et al (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18PubMedCrossRef Singhal T, Narayanan TK, Jain V et al (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18PubMedCrossRef
3.
go back to reference Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338PubMed Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338PubMed
4.
go back to reference Akhurst T, Beattie B, Gogiberidze G, et al. (2006) [18F]FACBC imaging of recurrent gliomas: a comparison with [11C]methionine and MRI [abstract]. J Nucl Med 47:79P. Akhurst T, Beattie B, Gogiberidze G, et al. (2006) [18F]FACBC imaging of recurrent gliomas: a comparison with [11C]methionine and MRI [abstract]. J Nucl Med 47:79P.
5.
go back to reference Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55PubMed Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55PubMed
6.
go back to reference Sasajima T, Ono T, Shimada N et al (2013) Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-l-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol 40:808–815PubMedCrossRef Sasajima T, Ono T, Shimada N et al (2013) Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-l-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol 40:808–815PubMedCrossRef
7.
go back to reference Schuster DM, Taleghani PA, Nieh PT et al (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[18F] -fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake. Am J Nucl Med Mol Imaging 3:85–96PubMedCentralPubMed Schuster DM, Taleghani PA, Nieh PT et al (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[18F] -fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake. Am J Nucl Med Mol Imaging 3:85–96PubMedCentralPubMed
8.
go back to reference Sfanos KS, De Marzo AM (2012) Prostate cancer and inflammation: the evidence. Histopathology 60:199–215PubMedCrossRef Sfanos KS, De Marzo AM (2012) Prostate cancer and inflammation: the evidence. Histopathology 60:199–215PubMedCrossRef
9.
go back to reference Okudaira H, Shikano N, Nishii R et al (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52:822–829PubMedCrossRef Okudaira H, Shikano N, Nishii R et al (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52:822–829PubMedCrossRef
10.
go back to reference Oka S, Okudaira H, Yoshida Y et al (2012) Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 39:109–119PubMedCrossRef Oka S, Okudaira H, Yoshida Y et al (2012) Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 39:109–119PubMedCrossRef
11.
go back to reference Okudaira H, Nakanishi T, Oka S et al (2013) Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol 40:670–675PubMedCrossRef Okudaira H, Nakanishi T, Oka S et al (2013) Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2. Nucl Med Biol 40:670–675PubMedCrossRef
12.
go back to reference Hediger MA, Romero MF, Peng JB et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468PubMedCrossRef Hediger MA, Romero MF, Peng JB et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468PubMedCrossRef
13.
go back to reference Kanai Y, Fukasawa Y, Cha SH et al (2000) Transport properties of a system y+L neutral and basic AA transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793PubMedCrossRef Kanai Y, Fukasawa Y, Cha SH et al (2000) Transport properties of a system y+L neutral and basic AA transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793PubMedCrossRef
14.
go back to reference Rau FC, Weber WA, Wester HJ et al (2002) O-(2-[18F]Fluoroethyl)-l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 29:1039–1046PubMedCrossRef Rau FC, Weber WA, Wester HJ et al (2002) O-(2-[18F]Fluoroethyl)-l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 29:1039–1046PubMedCrossRef
15.
go back to reference Tsukada H, Sato K, Fukumoto D et al (2006) Evaluation of d-isomers of O-11C-methyl tyrosine and O-18F-fluoromethyl tyrosine as tumor-imaging agents in tumor-bearing mice: comparison with l- and d-11C-methionine. J Nucl Med 47:679–688PubMed Tsukada H, Sato K, Fukumoto D et al (2006) Evaluation of d-isomers of O-11C-methyl tyrosine and O-18F-fluoromethyl tyrosine as tumor-imaging agents in tumor-bearing mice: comparison with l- and d-11C-methionine. J Nucl Med 47:679–688PubMed
16.
go back to reference Tsuyuguchi N, Sunada I, Ohata K et al (2003) Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 17:47–51PubMedCrossRef Tsuyuguchi N, Sunada I, Ohata K et al (2003) Evaluation of treatment effects in brain abscess with positron emission tomography: comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine. Ann Nucl Med 17:47–51PubMedCrossRef
18.
go back to reference Segel GB, Simon W, Lichtman MA (1984) Multicomponent analysis of amino acid transport in human lymphocytes. Diminished l-system transport in chronic leukemic B lymphocytes. J Clin Invest 74:17–24PubMedCentralPubMedCrossRef Segel GB, Simon W, Lichtman MA (1984) Multicomponent analysis of amino acid transport in human lymphocytes. Diminished l-system transport in chronic leukemic B lymphocytes. J Clin Invest 74:17–24PubMedCentralPubMedCrossRef
19.
go back to reference Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336PubMedCrossRef Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336PubMedCrossRef
20.
go back to reference Gmünder H, Eck HP, Dröge W (1991) Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem 201:113–117PubMedCrossRef Gmünder H, Eck HP, Dröge W (1991) Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem 201:113–117PubMedCrossRef
21.
go back to reference Iruloh CG, D'Souza SW, Fergusson WD et al (2009) Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 65:51–56PubMedCentralPubMedCrossRef Iruloh CG, D'Souza SW, Fergusson WD et al (2009) Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 65:51–56PubMedCentralPubMedCrossRef
22.
go back to reference Gaugitsch HW, Prieschl EE, Kalthoff F et al (1992) A novel transiently expressed, integral membrane protein linked to cell activation. Molecular cloning via the rapid degradation signal AUUUA. J Biol Chem 267:11267–11273PubMed Gaugitsch HW, Prieschl EE, Kalthoff F et al (1992) A novel transiently expressed, integral membrane protein linked to cell activation. Molecular cloning via the rapid degradation signal AUUUA. J Biol Chem 267:11267–11273PubMed
23.
go back to reference Matsumoto Y, Satoh-Ueno K, Yoshimura A et al (1999) Identification and immunological characterization of a novel 40-kDa protein linked to CD98 antigen. Cell Struct Funct 24:217–226PubMedCrossRef Matsumoto Y, Satoh-Ueno K, Yoshimura A et al (1999) Identification and immunological characterization of a novel 40-kDa protein linked to CD98 antigen. Cell Struct Funct 24:217–226PubMedCrossRef
24.
25.
go back to reference Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266PubMedCrossRef Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266PubMedCrossRef
26.
go back to reference Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522SPubMed Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522SPubMed
27.
go back to reference Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of l-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105PubMedCrossRef Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of l-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105PubMedCrossRef
28.
go back to reference Ploessl K, Wang L, Lieberman BP et al (2012) Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med 53:1616–1624PubMedCrossRef Ploessl K, Wang L, Lieberman BP et al (2012) Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med 53:1616–1624PubMedCrossRef
29.
go back to reference Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77PubMedCrossRef Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77PubMedCrossRef
30.
go back to reference Fossati G, Ricevuti G, Edwards SW et al (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354PubMedCrossRef Fossati G, Ricevuti G, Edwards SW et al (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354PubMedCrossRef
31.
go back to reference Kaim AH, Weber B, Kurrer MO et al (2002) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451PubMedCrossRef Kaim AH, Weber B, Kurrer MO et al (2002) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451PubMedCrossRef
32.
go back to reference Zhao S, Kuge Y, Kohanawa M et al (2008) Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nucl Med 49:135–141PubMedCrossRef Zhao S, Kuge Y, Kohanawa M et al (2008) Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nucl Med 49:135–141PubMedCrossRef
33.
go back to reference Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699PubMedCrossRef Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699PubMedCrossRef
34.
go back to reference Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559PubMedCrossRef Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559PubMedCrossRef
Metadata
Title
Differences in Transport Mechanisms of trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Inflammation, Prostate Cancer, and Glioma Cells: Comparison with l-[Methyl-11C]Methionine and 2-Deoxy-2-[18F]Fluoro-d-Glucose
Authors
Shuntaro Oka
Hiroyuki Okudaira
Masahiro Ono
David M. Schuster
Mark M. Goodman
Keiichi Kawai
Yoshifumi Shirakami
Publication date
01-06-2014
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 3/2014
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-013-0693-0

Other articles of this Issue 3/2014

Molecular Imaging and Biology 3/2014 Go to the issue