Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2013

01-08-2013 | Research Article

MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent

Authors: Lisette H. Deddens, Geralda A. F. van Tilborg, Annette van der Toorn, Kajo van der Marel, Leonie E. M. Paulis, Louis van Bloois, Gert Storm, Gustav J. Strijkers, Willem J. M. Mulder, Helga E. de Vries, Rick M. Dijkhuizen

Published in: Molecular Imaging and Biology | Issue 4/2013

Login to get access

Abstract

Purpose

Magnetic resonance imaging (MRI) with targeted contrast agents provides a promising means for diagnosis and treatment monitoring after cerebrovascular injury. Our goal was to demonstrate the feasibility of this approach to detect the neuroinflammatory biomarker intercellular adhesion molecule-1 (ICAM-1) after stroke and to establish a most efficient imaging procedure.

Procedures

We compared two types of ICAM-1-functionalized contrast agent: T 1-shortening gadolinium chelate-containing liposomes and T 2 (*)-shortening micron-sized iron oxide particles (MPIO). Binding efficacy and MRI contrast effects were tested in cell cultures and a mouse stroke model.

Results

Both ICAM-1-targeted agents bound effectively to activated cerebrovascular cells in vitro, generating significant MRI contrast-enhancing effects. Direct in vivo MRI-based detection after stroke was only achieved with ICAM-1-targeted MPIO, although both contrast agents showed similar target-specific vascular accumulation.

Conclusions

Our study demonstrates the potential of in vivo MRI of post-stroke ICAM-1 upregulation and signifies target-specific MPIO as most suitable contrast agent for molecular MRI of cerebrovascular inflammation.
Literature
1.
go back to reference Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808PubMedCrossRef Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808PubMedCrossRef
2.
3.
go back to reference Gupta H, Weissleder R (1996) Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171–184PubMed Gupta H, Weissleder R (1996) Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171–184PubMed
4.
go back to reference Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23:1383–1402PubMedCrossRef Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23:1383–1402PubMedCrossRef
5.
go back to reference Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609PubMedCrossRef Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609PubMedCrossRef
6.
go back to reference Deddens LH, Van Tilborg GA, Mulder WJ, De Vries HE, Dijkhuizen RM (2012) Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 33:392–402PubMedCrossRef Deddens LH, Van Tilborg GA, Mulder WJ, De Vries HE, Dijkhuizen RM (2012) Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 33:392–402PubMedCrossRef
7.
go back to reference Muller RN, Roch A, Colet J-M, Ouakssim A, Gillis P (2001) Particulate magnetic contrast agents. In: Merbach AE, Tóth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York, pp 417–435 Muller RN, Roch A, Colet J-M, Ouakssim A, Gillis P (2001) Particulate magnetic contrast agents. In: Merbach AE, Tóth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York, pp 417–435
8.
go back to reference Wijagkanalan W, Kawakami S, Hashida M (2011) Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 28:1500–1519PubMedCrossRef Wijagkanalan W, Kawakami S, Hashida M (2011) Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations. Pharm Res 28:1500–1519PubMedCrossRef
9.
go back to reference Mulder WJ, Strijkers GJ, Van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164PubMedCrossRef Mulder WJ, Strijkers GJ, Van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164PubMedCrossRef
10.
go back to reference Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16:4712–4727PubMedCrossRef Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN (2009) Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem 16:4712–4727PubMedCrossRef
11.
go back to reference Barber PA, Foniok T, Kirk D et al (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56:116–120PubMedCrossRef Barber PA, Foniok T, Kirk D et al (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56:116–120PubMedCrossRef
12.
go back to reference Jin AY, Tuor UI, Rushforth D et al (2009) Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging 4:305–311PubMedCrossRef Jin AY, Tuor UI, Rushforth D et al (2009) Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging 4:305–311PubMedCrossRef
13.
go back to reference Van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 106:18–23PubMedCrossRef Van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 106:18–23PubMedCrossRef
14.
go back to reference Hoyte LC, Brooks KJ, Nagel S et al (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–1187PubMedCrossRef Hoyte LC, Brooks KJ, Nagel S et al (2010) Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1178–1187PubMedCrossRef
15.
go back to reference Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589PubMedCrossRef Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci U S A 105:18584–18589PubMedCrossRef
16.
go back to reference Zhang RL, Chopp M, Zaloga C et al (1995) The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res 682:182–188PubMedCrossRef Zhang RL, Chopp M, Zaloga C et al (1995) The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res 682:182–188PubMedCrossRef
17.
go back to reference Shyu KG, Chang H, Lin CC (1997) Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol 244:90–93PubMedCrossRef Shyu KG, Chang H, Lin CC (1997) Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol 244:90–93PubMedCrossRef
18.
go back to reference Everts M, Koning GA, Kok RJ et al (2003) In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res 20:64–72PubMedCrossRef Everts M, Koning GA, Kok RJ et al (2003) In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res 20:64–72PubMedCrossRef
19.
go back to reference Koning GA, Morselt HW, Velinova MJ et al (1999) Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim Biophys Acta 1420:153–167PubMedCrossRef Koning GA, Morselt HW, Velinova MJ et al (1999) Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim Biophys Acta 1420:153–167PubMedCrossRef
20.
go back to reference Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496PubMedCrossRef Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496PubMedCrossRef
21.
go back to reference Wagner EF, Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 5:137–145PubMed Wagner EF, Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 5:137–145PubMed
22.
go back to reference Perls M (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Archiv 39:42–48CrossRef Perls M (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Archiv 39:42–48CrossRef
23.
go back to reference Oude Engberink RD, Van der Pol SM, Dopp EA, De Vries HE, Blezer EL (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474PubMedCrossRef Oude Engberink RD, Van der Pol SM, Dopp EA, De Vries HE, Blezer EL (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474PubMedCrossRef
24.
go back to reference Hata R, Mies G, Wiessner C et al (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18:367–375PubMedCrossRef Hata R, Mies G, Wiessner C et al (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18:367–375PubMedCrossRef
25.
go back to reference Bouts MJ, Tiebosch IA, Zwartbol R, Hoogveld E, Wu O, Dijkhuizen RM (2011) Early prediction of salvageable tissue with multiparametric MRI-based algorithms after experimental ischemic stroke [abstract]. Proc Intl Soc Mag Reson Med 19:2141P Bouts MJ, Tiebosch IA, Zwartbol R, Hoogveld E, Wu O, Dijkhuizen RM (2011) Early prediction of salvageable tissue with multiparametric MRI-based algorithms after experimental ischemic stroke [abstract]. Proc Intl Soc Mag Reson Med 19:2141P
26.
go back to reference Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S (2012) Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 53:812–819PubMedCrossRef Zhu Y, Ling Y, Zhong J, Liu X, Wei K, Huang S (2012) Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 53:812–819PubMedCrossRef
27.
go back to reference Serres S, Mardiguian S, Campbell SJ, et al (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 25:4415–4422 Serres S, Mardiguian S, Campbell SJ, et al (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J 25:4415–4422
28.
go back to reference Montagne A, Gauberti M, Macrez R et al (2012) Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage 63:760–770PubMedCrossRef Montagne A, Gauberti M, Macrez R et al (2012) Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage 63:760–770PubMedCrossRef
29.
go back to reference Yang Y, Yanasak N, Schumacher A, Hu TC (2010) Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 63:33–40PubMed Yang Y, Yanasak N, Schumacher A, Hu TC (2010) Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 63:33–40PubMed
30.
go back to reference Ye Q, Wu YL, Foley LM et al (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118:149–156PubMedCrossRef Ye Q, Wu YL, Foley LM et al (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118:149–156PubMedCrossRef
31.
go back to reference Vandeputte C, Thomas D, Dresselaers T et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13:663–671PubMedCrossRef Vandeputte C, Thomas D, Dresselaers T et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13:663–671PubMedCrossRef
32.
go back to reference Mulder WJ, Strijkers GJ, Habets JW et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008–2010PubMed Mulder WJ, Strijkers GJ, Habets JW et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008–2010PubMed
33.
go back to reference Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman L (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104:1–9PubMedCrossRef Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman L (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 104:1–9PubMedCrossRef
34.
go back to reference Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743PubMed Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743PubMed
35.
go back to reference Woodle MC, Matthay KK, Newman MS et al (1992) Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim Biophys Acta 1105:193–200PubMedCrossRef Woodle MC, Matthay KK, Newman MS et al (1992) Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim Biophys Acta 1105:193–200PubMedCrossRef
36.
go back to reference Van Tilborg GA, Mulder WJ, Van der Schaft DW et al (2008) Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 10:1459–1469PubMed Van Tilborg GA, Mulder WJ, Van der Schaft DW et al (2008) Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 10:1459–1469PubMed
37.
go back to reference Paulis LE, Jacobs I, Van den Akker NM, et al. (2011) In vivo molecular MRI of ICAM-1 expression in murine cardiac ischemia/reperfusion using a liposomal nanoparticle [abstract]. Proc Intl Soc Mag Reson Med 19:1660P Paulis LE, Jacobs I, Van den Akker NM, et al. (2011) In vivo molecular MRI of ICAM-1 expression in murine cardiac ischemia/reperfusion using a liposomal nanoparticle [abstract]. Proc Intl Soc Mag Reson Med 19:1660P
38.
go back to reference Paulis LE, Jacobs I, van de Akker N et al (2012) Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J Nanobiotechnology 10:25PubMedCrossRef Paulis LE, Jacobs I, van de Akker N et al (2012) Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J Nanobiotechnology 10:25PubMedCrossRef
39.
go back to reference Abra RM, Hunt CA (1981) Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim Biophys Acta 666:493–503PubMedCrossRef Abra RM, Hunt CA (1981) Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim Biophys Acta 666:493–503PubMedCrossRef
40.
go back to reference Van Tilborg GA, Strijkers GJ, Pouget EM et al (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magn Reson Med 60:1444–1456PubMedCrossRef Van Tilborg GA, Strijkers GJ, Pouget EM et al (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magn Reson Med 60:1444–1456PubMedCrossRef
41.
go back to reference McAteer MA, Sibson NR, von Zur MC et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258PubMedCrossRef McAteer MA, Sibson NR, von Zur MC et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258PubMedCrossRef
42.
go back to reference Kok MB, Hak S, Mulder WJ, Van der Schaft DW, Strijkers GJ, Nicolay K (2009) Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T1 and T2 relaxivity. Magn Reson Med 61:1022–1032PubMedCrossRef Kok MB, Hak S, Mulder WJ, Van der Schaft DW, Strijkers GJ, Nicolay K (2009) Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T1 and T2 relaxivity. Magn Reson Med 61:1022–1032PubMedCrossRef
43.
go back to reference Mastrobattista E, Storm G, van Bloois L et al (1999) Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochim Biophys Acta 1419:353–363PubMedCrossRef Mastrobattista E, Storm G, van Bloois L et al (1999) Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochim Biophys Acta 1419:353–363PubMedCrossRef
44.
go back to reference Van de Stolpe A, Van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med (Berl) 74:13–33CrossRef Van de Stolpe A, Van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med (Berl) 74:13–33CrossRef
45.
go back to reference Zhou W, Liesz A, Bauer H et al (2012) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44PubMedCrossRef Zhou W, Liesz A, Bauer H et al (2012) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44PubMedCrossRef
46.
go back to reference Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33PubMedCrossRef Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33PubMedCrossRef
47.
go back to reference Nkansah MK, Thakral D, Shapiro EM (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med 65:1776–1785PubMedCrossRef Nkansah MK, Thakral D, Shapiro EM (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magn Reson Med 65:1776–1785PubMedCrossRef
Metadata
Title
MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent
Authors
Lisette H. Deddens
Geralda A. F. van Tilborg
Annette van der Toorn
Kajo van der Marel
Leonie E. M. Paulis
Louis van Bloois
Gert Storm
Gustav J. Strijkers
Willem J. M. Mulder
Helga E. de Vries
Rick M. Dijkhuizen
Publication date
01-08-2013
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 4/2013
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-013-0617-z

Other articles of this Issue 4/2013

Molecular Imaging and Biology 4/2013 Go to the issue