Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2018

01-09-2018 | Laboratory Investigation

GOLPH3 promotes glioma progression via facilitating JAK2–STAT3 pathway activation

Authors: Shishuang Wu, Jiale Fu, Yu Dong, Qinghao Yi, Dong Lu, Weibing Wang, Yanhua Qi, Rutong Yu, Xiuping Zhou

Published in: Journal of Neuro-Oncology | Issue 2/2018

Login to get access

Abstract

Introduction

Our recent work reported that GOLPH3 promotes glioma progression via inhibiting endocytosis and degradation of EGFR. The current study aimed to explore the potential regulating mechanism of GOLPH3 on JAK2–STAT3 signaling, a downstream effector of EGFR, in glioma progression.

Methods

The expression of JAK2, STAT3 and GOLPH3 in glioma tissues was detected by western blotting, tissue microarray and immunohistochemistry. The U251 and U87 cells with GOLPH3 down-regulation or over-expression were generated by lentivirus system. The effects of GOLPH3 on the activity of JAK2 and STAT3 were detected by western blotting and reverse transcription polymerase chain reaction. Co-immunoprecipitation was used to detect the association of GOLPH3 with JAK2 and STAT3. Cell proliferation was detected by CCK8 and EdU assay.

Results

The level of JAK2, STAT3 and GOLPH3 were significantly up-regulated and exhibited pairwise correlation in human glioma tissues. The level of p-JAK2 and p-STAT3, as well as the mRNA and protein levels of cyclin D1 and c-myc, two target genes of STAT3, decreased after GOLPH3 down-regulation, while they increased after GOLPH3 over-expression both in U251 and U87 cells. Interestingly, GOLPH3, JAK2 and STAT3 existed in the same protein complex and GOLPH3 affected the interaction of JAK2 and STAT3. Importantly, down-regulation of STAT3 partially abolished cell proliferation induced by GOLPH3 over-expression.

Conclusions

GOLPH3 may act as a scaffold protein to regulate JAK2–STAT3 interaction and then its activation, which therefore mediates the effect of GOLPH3 on cell proliferation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975CrossRefPubMedPubMedCentral Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975CrossRefPubMedPubMedCentral
3.
go back to reference Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6(6):3493–3506CrossRefPubMedPubMedCentral Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6(6):3493–3506CrossRefPubMedPubMedCentral
4.
go back to reference Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524CrossRefPubMedPubMedCentral Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524CrossRefPubMedPubMedCentral
5.
go back to reference Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMed Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMed
6.
go back to reference Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274(48):34294–34300CrossRefPubMed Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274(48):34294–34300CrossRefPubMed
8.
go back to reference Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1(8):523–525CrossRefPubMed Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1(8):523–525CrossRefPubMed
10.
go back to reference McKay HF, Burgess DR (2011) ‘Life is a highway’: membrane trafficking during cytokinesis. Traffic 12(3):247–251CrossRefPubMed McKay HF, Burgess DR (2011) ‘Life is a highway’: membrane trafficking during cytokinesis. Traffic 12(3):247–251CrossRefPubMed
11.
12.
go back to reference Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867CrossRefPubMed Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867CrossRefPubMed
13.
go back to reference Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229–2234CrossRefPubMedPubMedCentral Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229–2234CrossRefPubMedPubMedCentral
14.
go back to reference Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564–39577CrossRefPubMedPubMedCentral Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564–39577CrossRefPubMedPubMedCentral
15.
go back to reference Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496–1507CrossRefPubMed Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496–1507CrossRefPubMed
16.
go back to reference Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407CrossRefPubMed Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407CrossRefPubMed
17.
go back to reference Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013) Glycosylation disorders of membrane trafficking. Glycoconj J 30(1):23–31CrossRefPubMed Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013) Glycosylation disorders of membrane trafficking. Glycoconj J 30(1):23–31CrossRefPubMed
18.
go back to reference Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369CrossRefPubMed Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369CrossRefPubMed
19.
go back to reference Zhou X, Xue P, Yang M et al (2014) Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 355(1):121–129CrossRefPubMed Zhou X, Xue P, Yang M et al (2014) Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 355(1):121–129CrossRefPubMed
20.
go back to reference Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159(4):637–648CrossRefPubMedPubMedCentral Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159(4):637–648CrossRefPubMedPubMedCentral
21.
go back to reference Zhang X, Ding Z, Mo J et al (2015) GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 pathway in vitro. Mol Carcinog 54(11):1252–1263CrossRefPubMed Zhang X, Ding Z, Mo J et al (2015) GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 pathway in vitro. Mol Carcinog 54(11):1252–1263CrossRefPubMed
22.
go back to reference Zhou X, Zhan W, Bian W et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338–344CrossRefPubMed Zhou X, Zhan W, Bian W et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338–344CrossRefPubMed
23.
go back to reference Zhou X, Xie S, Wu S et al (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-oncology 19(12):1628–1639CrossRefPubMed Zhou X, Xie S, Wu S et al (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-oncology 19(12):1628–1639CrossRefPubMed
24.
go back to reference Felsberg J, Hentschel B, Kaulich K et al (2017) Epidermal Growth Factor Receptor Variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23(22):6846–6855CrossRefPubMed Felsberg J, Hentschel B, Kaulich K et al (2017) Epidermal Growth Factor Receptor Variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23(22):6846–6855CrossRefPubMed
25.
go back to reference Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319CrossRefPubMed Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319CrossRefPubMed
26.
go back to reference Fan QW, Cheng CK, Gustafson WC et al (2013) EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24(4):438–449CrossRefPubMed Fan QW, Cheng CK, Gustafson WC et al (2013) EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24(4):438–449CrossRefPubMed
27.
go back to reference Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421CrossRefPubMed Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421CrossRefPubMed
28.
go back to reference Heppler LN, Frank DA (2017) Targeting oncogenic transcription factors: therapeutic implications of endogenous STAT inhibitors. Trends Cancer 3(12):816–827CrossRefPubMed Heppler LN, Frank DA (2017) Targeting oncogenic transcription factors: therapeutic implications of endogenous STAT inhibitors. Trends Cancer 3(12):816–827CrossRefPubMed
29.
30.
go back to reference de la Iglesia N, Konopka G, Lim KL et al (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28(23):5870–5878CrossRefPubMedPubMedCentral de la Iglesia N, Konopka G, Lim KL et al (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28(23):5870–5878CrossRefPubMedPubMedCentral
31.
go back to reference Bromberg JF, Darnell JE Jr. (1999) Potential roles of Stat1 and Stat3 in cellular transformation. Cold Spring Harb Symp Quant Biol 64:425–428CrossRefPubMed Bromberg JF, Darnell JE Jr. (1999) Potential roles of Stat1 and Stat3 in cellular transformation. Cold Spring Harb Symp Quant Biol 64:425–428CrossRefPubMed
32.
go back to reference Besser D, Bromberg JF, Darnell JE Jr, Hanafusa H (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 19(2):1401–1409CrossRefPubMedPubMedCentral Besser D, Bromberg JF, Darnell JE Jr, Hanafusa H (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 19(2):1401–1409CrossRefPubMedPubMedCentral
33.
go back to reference Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R (2000) Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19(48):5419–5427CrossRefPubMed Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R (2000) Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19(48):5419–5427CrossRefPubMed
34.
36.
go back to reference Colomiere M, Ward AC, Riley C et al (2008) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer 100(1):134–144CrossRefPubMedPubMedCentral Colomiere M, Ward AC, Riley C et al (2008) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer 100(1):134–144CrossRefPubMedPubMedCentral
37.
go back to reference Zeng Z, Lin H, Zhao X et al (2012) Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res 18(15):4059–4069CrossRefPubMed Zeng Z, Lin H, Zhao X et al (2012) Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res 18(15):4059–4069CrossRefPubMed
38.
go back to reference Dai T, Zhang D, Cai M et al (2015) Golgi phosphoprotein 3 (GOLPH3) promotes hepatocellular carcinoma cell aggressiveness by activating the NF-κB pathway. J Pathol 235(3):490–501CrossRefPubMed Dai T, Zhang D, Cai M et al (2015) Golgi phosphoprotein 3 (GOLPH3) promotes hepatocellular carcinoma cell aggressiveness by activating the NF-κB pathway. J Pathol 235(3):490–501CrossRefPubMed
39.
go back to reference Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374CrossRefPubMed Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374CrossRefPubMed
40.
go back to reference Blakely CM, Watkins TBK, Wu W et al (2017) Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 49(12):1693–1704CrossRefPubMedPubMedCentral Blakely CM, Watkins TBK, Wu W et al (2017) Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 49(12):1693–1704CrossRefPubMedPubMedCentral
41.
go back to reference Runge D, Runge DM, Drenning SD, Bowen WC Jr, Grandis JR, Michalopoulos GK (1998) Growth and differentiation of rat hepatocytes: changes in transcription factors HNF-3, HNF-4, STAT-3, and STAT-5. Biochem Biophys Res Commun 250(3):762–768CrossRefPubMed Runge D, Runge DM, Drenning SD, Bowen WC Jr, Grandis JR, Michalopoulos GK (1998) Growth and differentiation of rat hepatocytes: changes in transcription factors HNF-3, HNF-4, STAT-3, and STAT-5. Biochem Biophys Res Commun 250(3):762–768CrossRefPubMed
Metadata
Title
GOLPH3 promotes glioma progression via facilitating JAK2–STAT3 pathway activation
Authors
Shishuang Wu
Jiale Fu
Yu Dong
Qinghao Yi
Dong Lu
Weibing Wang
Yanhua Qi
Rutong Yu
Xiuping Zhou
Publication date
01-09-2018
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2018
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-2884-7

Other articles of this Issue 2/2018

Journal of Neuro-Oncology 2/2018 Go to the issue