Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2019

01-01-2019 | Clinical Study

Use of hyperbaric oxygen therapy in pediatric neuro-oncology: a single institutional experience

Authors: Yasmin Aghajan, Ian Grover, Hamza Gorsi, Mark Tumblin, John Ross Crawford

Published in: Journal of Neuro-Oncology | Issue 1/2019

Login to get access

Abstract

Introduction

Hyperbaric oxygen therapy (HBOT) has been utilized as adjunctive treatment of CNS tumors and for radiation necrosis (RN) with reported success. The safety and efficacy in pediatric patients is less understood.

Methods

Seven patients (ages 10–23 years, six females) were treated with HBOT (3–60 sessions) for either RN (n = 5) or tumor-associated edema (n = 2). Tumor diagnosis included low-grade glioma (n = 4, two with neurofibromatosis type 1), meningioma (n = 1), medulloblastoma (n = 1) and secondary high grade glioma (n = 1). Prior therapies included: surgery (n = 4), chemotherapy (n = 4) and radiation (N = 5: four focal, one craniospinal). Three underwent biopsy: one confirming RN, one high-grade glioma, and one low-grade glioma. Patients were assessed for clinical and radiographic changes post HBOT.

Results

Median time to clinical and radiographic presentation was 8.5 months (range 6 months–11 years) in those who had prior radiation. Clinical improvement after HBOT (median: 40 sessions) was observed in four of seven patients. Symptoms were stable in two and worsened in one patient. Radiographic improvement was seen in four patients; three had radiographic disease progression. In the subgroup treated for presumed and biopsy-confirmed RN (n = 5), four of five (80%) had clinical and radiographic improvement. There were no long-term adverse events due to HBOT.

Conclusions

HBOT is safe and well-tolerated in pediatric and young adult patients with CNS tumors. Clinical and radiographic improvements were observed in over half of patients. Clinical trials are needed to establish safety and efficacy of HBOT as adjunct therapy in pediatric CNS tumors.
Literature
6.
go back to reference Chuba PJ, Aronin P, Bhambhani K et al (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80(10):2005–2012CrossRefPubMed Chuba PJ, Aronin P, Bhambhani K et al (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80(10):2005–2012CrossRefPubMed
7.
go back to reference Kohshi K, Kinoshita Y, Terashima H, Konda N, Yokota A, Soejima T (1996) Radiotherapy after hyperbaric oxygenation for malignant gliomas: a pilot study. J Cancer Res Clin Oncol 122(11):676–678CrossRefPubMed Kohshi K, Kinoshita Y, Terashima H, Konda N, Yokota A, Soejima T (1996) Radiotherapy after hyperbaric oxygenation for malignant gliomas: a pilot study. J Cancer Res Clin Oncol 122(11):676–678CrossRefPubMed
10.
go back to reference Hart GB, Strauss MB (1987) Central nervous system oxygen toxicity in a clinical setting. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds) Undersea and hyperbaric physiology IX. Proceedings of the ninth international symposium on underwater and hyperbaric physiology. Undersea and Hyperbaric Medical Society, Bethesda, pp 695–699 Hart GB, Strauss MB (1987) Central nervous system oxygen toxicity in a clinical setting. In: Bove AA, Bachrach AJ, Greenbaum LJ (eds) Undersea and hyperbaric physiology IX. Proceedings of the ninth international symposium on underwater and hyperbaric physiology. Undersea and Hyperbaric Medical Society, Bethesda, pp 695–699
11.
go back to reference Plafki C, Peters P, Almeling M, Welslau W, Busch R (2000) Complications and side effects of hyperbaric oxygen therapy. Aviat Space Environ Med 71(2):119–124PubMed Plafki C, Peters P, Almeling M, Welslau W, Busch R (2000) Complications and side effects of hyperbaric oxygen therapy. Aviat Space Environ Med 71(2):119–124PubMed
12.
go back to reference Marx RE (1983) Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 41:283–288CrossRefPubMed Marx RE (1983) Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 41:283–288CrossRefPubMed
13.
go back to reference Feldmeier JJ, Davolt DA, Court WS, Onoda JM, Alecu R (1998) Histologic morphometry confirms a prophylactic effect for hyperbaric oxygen in the prevention of delayed radiation enteropathy. Undersea Hyperb Med 25(2):93–97PubMed Feldmeier JJ, Davolt DA, Court WS, Onoda JM, Alecu R (1998) Histologic morphometry confirms a prophylactic effect for hyperbaric oxygen in the prevention of delayed radiation enteropathy. Undersea Hyperb Med 25(2):93–97PubMed
14.
go back to reference Feldmeier JJ, Jelen I, Davolt DA, Valente PT, Meltz ML, Alecu R (1995) Hyperbaric oxygen as a prophylaxis for radiation induced delayed enteropathy. Radiother Oncol 35:138–144CrossRefPubMed Feldmeier JJ, Jelen I, Davolt DA, Valente PT, Meltz ML, Alecu R (1995) Hyperbaric oxygen as a prophylaxis for radiation induced delayed enteropathy. Radiother Oncol 35:138–144CrossRefPubMed
15.
go back to reference Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117:1249–1259CrossRefPubMedPubMedCentral Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117:1249–1259CrossRefPubMedPubMedCentral
17.
go back to reference Murphy ES, Merchant TE, Wu S et al (2012) Necrosis after craniospinal irradiation: results from a prospective series of children with central nervous system embryonal tumors. Int J Radiat Oncol Biol Phys 83(5):e655–e660CrossRefPubMedPubMedCentral Murphy ES, Merchant TE, Wu S et al (2012) Necrosis after craniospinal irradiation: results from a prospective series of children with central nervous system embryonal tumors. Int J Radiat Oncol Biol Phys 83(5):e655–e660CrossRefPubMedPubMedCentral
18.
go back to reference Gunther JR, Sato M, Chintagumpala M et al (2015) Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 93(1):54–63CrossRefPubMed Gunther JR, Sato M, Chintagumpala M et al (2015) Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 93(1):54–63CrossRefPubMed
19.
go back to reference Indelicato DJ, Flampouri S, Rotondo RL et al (2014) Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol 53:1298–1304CrossRefPubMed Indelicato DJ, Flampouri S, Rotondo RL et al (2014) Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol 53:1298–1304CrossRefPubMed
20.
go back to reference Beppu T, Tanaka K, Kohshi K (2009) Utility of hyperbaric oxygenation in radiotherapy for malignant brain tumors—a literature review. Brain Nerve 61(6):677–681PubMed Beppu T, Tanaka K, Kohshi K (2009) Utility of hyperbaric oxygenation in radiotherapy for malignant brain tumors—a literature review. Brain Nerve 61(6):677–681PubMed
21.
go back to reference Feldmeier JJ (2001) Hyperbaric oxygen: does it have a cancer causing or growth enhancing effect. In: Proceedings of the consensus conference sponsored by the European society for therapeutic radiology and oncology and the European committee for hyperbaric medicine. Portugal, pp 129–146 Feldmeier JJ (2001) Hyperbaric oxygen: does it have a cancer causing or growth enhancing effect. In: Proceedings of the consensus conference sponsored by the European society for therapeutic radiology and oncology and the European committee for hyperbaric medicine. Portugal, pp 129–146
24.
go back to reference Suzuki Y, Tanaka K, Negishi D, Shimizu M, Yoshida Y, Hashimoto T, Yamazaki H (2009) Pharmacokinetic investigation of increased efficacy against malignant gliomas of carboplatin combined with hyperbaric oxygenation. Neurol Med Chir 49(5):193–197 (discussion 197)CrossRef Suzuki Y, Tanaka K, Negishi D, Shimizu M, Yoshida Y, Hashimoto T, Yamazaki H (2009) Pharmacokinetic investigation of increased efficacy against malignant gliomas of carboplatin combined with hyperbaric oxygenation. Neurol Med Chir 49(5):193–197 (discussion 197)CrossRef
25.
go back to reference Kohshi K, Beppu T, Tanaka K, Ogawa K, Inoue O, Kukita I, Clarke RE (2013) Potential roles of hyperbaric oxygenation in the treatments of brain tumors. Undersea Hyperb Med 40(4):351–362PubMed Kohshi K, Beppu T, Tanaka K, Ogawa K, Inoue O, Kukita I, Clarke RE (2013) Potential roles of hyperbaric oxygenation in the treatments of brain tumors. Undersea Hyperb Med 40(4):351–362PubMed
Metadata
Title
Use of hyperbaric oxygen therapy in pediatric neuro-oncology: a single institutional experience
Authors
Yasmin Aghajan
Ian Grover
Hamza Gorsi
Mark Tumblin
John Ross Crawford
Publication date
01-01-2019
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2019
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-03021-x

Other articles of this Issue 1/2019

Journal of Neuro-Oncology 1/2019 Go to the issue