Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2018

01-01-2018 | Clinical Study

Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur

Authors: Dylann Fujimoto, Rie von Eyben, Iris C. Gibbs, Steven D. Chang, Gordon Li, Griffith R. Harsh, Steven Hancock, Nancy Fischbein, Scott G. Soltys

Published in: Journal of Neuro-Oncology | Issue 1/2018

Login to get access

Abstract

Following stereotactic radiosurgery (SRS) for brain metastases, the median time range to develop adverse radiation effect (ARE) or radiation necrosis is 7–11 months. Similarly, the risk of local tumor recurrence following SRS is < 5% after 18 months. With improvements in systemic therapy, patients are living longer and are at risk for both late (defined as > 18 months after SRS) tumor recurrence and late ARE, which have not previously been well described. An IRB-approved, retrospective review identified patients treated with SRS who developed new MRI contrast enhancement > 18 months following SRS. ARE was defined as stabilization/shrinkage of the lesion over time or pathologic confirmation of necrosis, without tumor. Local failure (LF) was defined as continued enlargement of the lesion over time or pathologic confirmation of tumor. We identified 16 patients, with a median follow-up of 48.2 months and median overall survival of 73.0 months, who had 19 metastases with late imaging changes occurring a median of 32.9 months (range 18.5–63.2 months) after SRS. Following SRS, 12 lesions had late ARE at a median of 33.2 months and 7 lesions had late LF occurring a median of 23.6 months. As patients with cancer live longer and as SRS is increasingly utilized for treatment of brain metastases, the incidence of these previously rare imaging changes is likely to increase. Clinicians should be aware of these late events, with ARE occurring up to 5.3 years and local failure up to 3.8 years following SRS in our cohort.
Literature
1.
5.
go back to reference Minniti G, Scaringi C, Paolini S et al (2016) Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (> 2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 95:1142–1148. doi:10.1016/j.ijrobp.2016.03.013 CrossRefPubMed Minniti G, Scaringi C, Paolini S et al (2016) Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (> 2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 95:1142–1148. doi:10.​1016/​j.​ijrobp.​2016.​03.​013 CrossRefPubMed
6.
go back to reference Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952–26001 study. J Clin Oncol 29:134–141. doi:10.1200/JCO.2010.30.1655 CrossRefPubMed Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952–26001 study. J Clin Oncol 29:134–141. doi:10.​1200/​JCO.​2010.​30.​1655 CrossRefPubMed
8.
go back to reference Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol 47:291–298. doi:10.1016/S0360-3016(99)00507-6 CrossRef Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol 47:291–298. doi:10.​1016/​S0360-3016(99)00507-6 CrossRef
9.
13.
go back to reference Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044. doi:10.1016/S1470-2045(09)70263-3 CrossRefPubMed Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044. doi:10.​1016/​S1470-2045(09)70263-3 CrossRefPubMed
16.
go back to reference Cicone F, Minniti G, Romano A et al (2015) Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 42:103–111. doi:10.1007/s00259-014-2886-4 CrossRefPubMed Cicone F, Minniti G, Romano A et al (2015) Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 42:103–111. doi:10.​1007/​s00259-014-2886-4 CrossRefPubMed
18.
go back to reference Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating Recurrent Tumor from Radiation Necrosis: Time for Re-evaluation of Positron Emission Tomography? Am J Neuroradiol 19:407–413PubMed Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating Recurrent Tumor from Radiation Necrosis: Time for Re-evaluation of Positron Emission Tomography? Am J Neuroradiol 19:407–413PubMed
19.
go back to reference Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197. doi:10.1002/ijc.1016 CrossRefPubMed Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197. doi:10.​1002/​ijc.​1016 CrossRefPubMed
20.
go back to reference Chen W, Silverman DHS, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMed Chen W, Silverman DHS, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMed
21.
go back to reference Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88. doi:10.1007/s11060-009-0106-z CrossRefPubMed Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88. doi:10.​1007/​s11060-009-0106-z CrossRefPubMed
Metadata
Title
Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur
Authors
Dylann Fujimoto
Rie von Eyben
Iris C. Gibbs
Steven D. Chang
Gordon Li
Griffith R. Harsh
Steven Hancock
Nancy Fischbein
Scott G. Soltys
Publication date
01-01-2018
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2018
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-017-2647-x

Other articles of this Issue 1/2018

Journal of Neuro-Oncology 1/2018 Go to the issue