Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2017

01-06-2017 | Laboratory Investigation

Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy

Authors: Ilya V. Ulasov, Haidn Foster, Mike Butters, Jae-Geun Yoon, Tomoko Ozawa, Theodore Nicolaides, Xavier Figueroa, Parvinder Hothi, Michael Prados, John Butters, Charles Cobbs

Published in: Journal of Neuro-Oncology | Issue 2/2017

Login to get access

Abstract

Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30–70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jauchem JR (2008) Effects of low-level radio-frequency (3 kHz–300 GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. Int J Hyg Environ Health 211:1–29CrossRefPubMed Jauchem JR (2008) Effects of low-level radio-frequency (3 kHz–300 GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. Int J Hyg Environ Health 211:1–29CrossRefPubMed
2.
go back to reference Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109CrossRefPubMed Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109CrossRefPubMed
4.
go back to reference Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648CrossRefPubMed Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648CrossRefPubMed
5.
go back to reference Ćosić I, Pirogova E, Vojisavljević V, Fang Q (2006) Electromagnetic properties of biomolecules. FME Trans 34:10 Ćosić I, Pirogova E, Vojisavljević V, Fang Q (2006) Electromagnetic properties of biomolecules. FME Trans 34:10
6.
go back to reference Montagnier L, Del Giudice E, Aissa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G (2015) Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 34:106–112. doi:10.3109/15368378.2015.1036072 CrossRefPubMed Montagnier L, Del Giudice E, Aissa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G (2015) Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 34:106–112. doi:10.​3109/​15368378.​2015.​1036072 CrossRefPubMed
7.
8.
go back to reference Butters JT, Figueroa XA, Butters BM (2014) Non-thermal radio frequency stimulation of tubulin polymerization in vitro: a potential therapy for cancer treatment. Open J Biophys 4:22CrossRef Butters JT, Figueroa XA, Butters BM (2014) Non-thermal radio frequency stimulation of tubulin polymerization in vitro: a potential therapy for cancer treatment. Open J Biophys 4:22CrossRef
9.
go back to reference Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, Morikawa T, Abe S, Takao A, Shimizu M, Masuko T, Nagane M, Furnari FB, Akiyama T, Suematsu M, Baba E, Akashi K, Saya H, Nagano O (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963. doi:10.1158/0008-5472 CrossRefPubMedPubMedCentral Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, Morikawa T, Abe S, Takao A, Shimizu M, Masuko T, Nagane M, Furnari FB, Akiyama T, Suematsu M, Baba E, Akashi K, Saya H, Nagano O (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963. doi:10.​1158/​0008-5472 CrossRefPubMedPubMedCentral
10.
go back to reference Cominelli M, Grisanti S, Mazzoleni S, Branca C, Buttolo L, Furlan D, Liserre B, Bonetti MF, Medicina D, Pellegrini V, Buglione M, Liserre R, Pellegatta S, Finocchiaro G, Dalerba P, Facchetti F, Pizzi M, Galli R, Poliani PL (2015) EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide. J Natl Cancer Inst. doi:10.1093/jnci/djv041 PubMed Cominelli M, Grisanti S, Mazzoleni S, Branca C, Buttolo L, Furlan D, Liserre B, Bonetti MF, Medicina D, Pellegrini V, Buglione M, Liserre R, Pellegatta S, Finocchiaro G, Dalerba P, Facchetti F, Pizzi M, Galli R, Poliani PL (2015) EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide. J Natl Cancer Inst. doi:10.​1093/​jnci/​djv041 PubMed
11.
go back to reference Klingler S, Guo B, Yao J, Yan H, Zhang L, Vaseva AV, Chen S, Canoll P, Horner JW, Wang YA, Paik JH, Ying H, Zheng H (2015) Development of resistance to EGFR-targeted therapy in malignant glioma can occur through EGFR-dependent and -independent mechanisms. Cancer Res 75:2109–2119. doi:10.1158/0008-5472 CrossRefPubMedPubMedCentral Klingler S, Guo B, Yao J, Yan H, Zhang L, Vaseva AV, Chen S, Canoll P, Horner JW, Wang YA, Paik JH, Ying H, Zheng H (2015) Development of resistance to EGFR-targeted therapy in malignant glioma can occur through EGFR-dependent and -independent mechanisms. Cancer Res 75:2109–2119. doi:10.​1158/​0008-5472 CrossRefPubMedPubMedCentral
12.
go back to reference Schulte A, Liffers K, Kathagen A, Riethdorf S, Zapf S, Merlo A, Kolbe K, Westphal M, Lamszus K (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110delta. Neuro Oncol 15:1289–1301. doi:10.1093/neuonc/not093 CrossRefPubMedPubMedCentral Schulte A, Liffers K, Kathagen A, Riethdorf S, Zapf S, Merlo A, Kolbe K, Westphal M, Lamszus K (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110delta. Neuro Oncol 15:1289–1301. doi:10.​1093/​neuonc/​not093 CrossRefPubMedPubMedCentral
14.
go back to reference Hirono S, Umeyama H, Moriguchi I (1984) Electrostatic potential images of drugs targetting dopamine receptors. Chemical Pharm Bull 32:3061–3065CrossRef Hirono S, Umeyama H, Moriguchi I (1984) Electrostatic potential images of drugs targetting dopamine receptors. Chemical Pharm Bull 32:3061–3065CrossRef
16.
17.
go back to reference Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. doi:10.3791/1986 Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. doi:10.​3791/​1986
18.
go back to reference Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, Vivacqua A, Abonante S, Cappello AR, Dolce V, Belfiore A, Maggiolini M, Lappano R (2016) GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. doi:10.1002/mc.22518 PubMed Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, Vivacqua A, Abonante S, Cappello AR, Dolce V, Belfiore A, Maggiolini M, Lappano R (2016) GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. doi:10.​1002/​mc.​22518 PubMed
22.
go back to reference Zhao Y, Xiao A, Dipierro CG, Abdel-Fattah R, Amos S, Redpath GT, Carpenter JE, Pieper RO, Hussaini IM (2008) H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 56:917–924. doi:10.1002/glia.20667 CrossRefPubMedPubMedCentral Zhao Y, Xiao A, Dipierro CG, Abdel-Fattah R, Amos S, Redpath GT, Carpenter JE, Pieper RO, Hussaini IM (2008) H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 56:917–924. doi:10.​1002/​glia.​20667 CrossRefPubMedPubMedCentral
23.
go back to reference Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94:184–188CrossRefPubMedPubMedCentral Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94:184–188CrossRefPubMedPubMedCentral
Metadata
Title
Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy
Authors
Ilya V. Ulasov
Haidn Foster
Mike Butters
Jae-Geun Yoon
Tomoko Ozawa
Theodore Nicolaides
Xavier Figueroa
Parvinder Hothi
Michael Prados
John Butters
Charles Cobbs
Publication date
01-06-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-017-2440-x

Other articles of this Issue 2/2017

Journal of Neuro-Oncology 2/2017 Go to the issue