Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2017

01-09-2017 | Topic Review

Molecular markers in glioma

Authors: Kirsten Ludwig, Harley I. Kornblum

Published in: Journal of Neuro-Oncology | Issue 3/2017

Login to get access

Abstract

Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC’s (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.
Literature
1.
go back to reference Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefPubMed Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820CrossRefPubMed
2.
go back to reference Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173CrossRefPubMed Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173CrossRefPubMed
3.
go back to reference Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefPubMedPubMedCentral Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefPubMedPubMedCentral
4.
go back to reference Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510CrossRefPubMed Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510CrossRefPubMed
7.
go back to reference Alentorn A et al (2015) Molecular profiling of gliomas: potential therapeutic implications. Expert Rev Anticancer Ther 15(8):955–962CrossRefPubMed Alentorn A et al (2015) Molecular profiling of gliomas: potential therapeutic implications. Expert Rev Anticancer Ther 15(8):955–962CrossRefPubMed
8.
9.
go back to reference Tanwar MK, Gilbert MR, Holland EC (2002) Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62(15):4364–4368PubMed Tanwar MK, Gilbert MR, Holland EC (2002) Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62(15):4364–4368PubMed
10.
go back to reference Patel M et al (2012) Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs 21(9):1247–1266CrossRefPubMed Patel M et al (2012) Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs 21(9):1247–1266CrossRefPubMed
11.
go back to reference Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003CrossRefPubMed Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003CrossRefPubMed
12.
go back to reference Gupta K, Salunke P (2012) Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol 138(12):1971–1981CrossRefPubMed Gupta K, Salunke P (2012) Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol 138(12):1971–1981CrossRefPubMed
13.
go back to reference Nakagawachi T et al (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22(55):8835–8844PubMed Nakagawachi T et al (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22(55):8835–8844PubMed
16.
go back to reference Ichimura K et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347CrossRefPubMedPubMedCentral Ichimura K et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347CrossRefPubMedPubMedCentral
18.
go back to reference Balss J et al (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602CrossRefPubMed Balss J et al (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602CrossRefPubMed
19.
go back to reference Yip S, Iafrate AJ, Louis DN (2008) Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J Neuropathol Exp Neurol 67(1):1–15CrossRefPubMed Yip S, Iafrate AJ, Louis DN (2008) Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J Neuropathol Exp Neurol 67(1):1–15CrossRefPubMed
20.
go back to reference Sugawa N et al (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87(21):8602–8606CrossRefPubMedPubMedCentral Sugawa N et al (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87(21):8602–8606CrossRefPubMedPubMedCentral
21.
go back to reference Nathanson DA et al (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343(6166):72–76CrossRefPubMed Nathanson DA et al (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343(6166):72–76CrossRefPubMed
22.
go back to reference Karsy M et al (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4CrossRefPubMed Karsy M et al (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4CrossRefPubMed
23.
go back to reference Mao H et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig 30(1):48–56CrossRef Mao H et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig 30(1):48–56CrossRef
24.
go back to reference Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35CrossRefPubMed Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35CrossRefPubMed
25.
go back to reference Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135(5):558–568PubMed Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135(5):558–568PubMed
26.
go back to reference Lam PY et al (2000) Expression of p19INK4d, CDK4, CDK6 in glioblastoma multiforme. Br J Neurosurg 14(1):28–32CrossRefPubMed Lam PY et al (2000) Expression of p19INK4d, CDK4, CDK6 in glioblastoma multiforme. Br J Neurosurg 14(1):28–32CrossRefPubMed
27.
go back to reference Cancer Genome Atlas Research (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455(7216):1061–1068CrossRef Cancer Genome Atlas Research (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455(7216):1061–1068CrossRef
28.
go back to reference Aldape K et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848CrossRefPubMed Aldape K et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848CrossRefPubMed
29.
go back to reference Knobbe CB, Reifenberger J, Reifenberger G (2004) Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 108(6):467–470CrossRefPubMed Knobbe CB, Reifenberger J, Reifenberger G (2004) Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol 108(6):467–470CrossRefPubMed
30.
go back to reference Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405CrossRefPubMed Schindler G et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405CrossRefPubMed
31.
go back to reference Jones DT et al (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28(20):2119–2123CrossRefPubMedPubMedCentral Jones DT et al (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28(20):2119–2123CrossRefPubMedPubMedCentral
33.
go back to reference Cho DY et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 22(4):731–739CrossRefPubMed Cho DY et al (2013) Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 22(4):731–739CrossRefPubMed
38.
go back to reference Trepant AL et al (2015) Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumor Biol 36(3):1943–1953CrossRef Trepant AL et al (2015) Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumor Biol 36(3):1943–1953CrossRef
39.
go back to reference Dahlrot RH et al (2013) What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol 6(3):334–348PubMedPubMedCentral Dahlrot RH et al (2013) What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol 6(3):334–348PubMedPubMedCentral
42.
go back to reference Lagadec C et al (2014) The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells 32(1):135–144CrossRefPubMedPubMedCentral Lagadec C et al (2014) The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells 32(1):135–144CrossRefPubMedPubMedCentral
44.
45.
go back to reference Schmohl JU, Vallera DA, CD133, selectively targeting the root of cancer. Toxins, 2016. 8(6) Schmohl JU, Vallera DA, CD133, selectively targeting the root of cancer. Toxins, 2016. 8(6)
46.
go back to reference Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMed Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMed
47.
go back to reference Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401CrossRefPubMed Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401CrossRefPubMed
48.
49.
go back to reference Xia CL et al (2003) A2B5 lineages of human astrocytic tumors and their recurrence. Int J Oncol 23(2):353–361PubMed Xia CL et al (2003) A2B5 lineages of human astrocytic tumors and their recurrence. Int J Oncol 23(2):353–361PubMed
50.
go back to reference Auvergne RM et al (2013) Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes. Cell Rep 3(6):2127–2141CrossRefPubMedPubMedCentral Auvergne RM et al (2013) Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes. Cell Rep 3(6):2127–2141CrossRefPubMedPubMedCentral
52.
go back to reference Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595CrossRefPubMed Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595CrossRefPubMed
53.
54.
go back to reference Kastan MB et al (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75(10):1947–1950PubMed Kastan MB et al (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75(10):1947–1950PubMed
55.
go back to reference Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96(16):9118–9123CrossRefPubMedPubMedCentral Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96(16):9118–9123CrossRefPubMedPubMedCentral
56.
go back to reference Douville J, Beaulieu R, Balicki D (2009) ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev 18(1):17–25CrossRefPubMed Douville J, Beaulieu R, Balicki D (2009) ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev 18(1):17–25CrossRefPubMed
57.
go back to reference Munakata K et al., Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res, 2016 Munakata K et al., Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res, 2016
59.
60.
go back to reference Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–877CrossRefPubMed Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–877CrossRefPubMed
61.
go back to reference Szakacs G et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234CrossRefPubMed Szakacs G et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234CrossRefPubMed
62.
go back to reference Bleau AM et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235CrossRefPubMedPubMedCentral Bleau AM et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235CrossRefPubMedPubMedCentral
63.
go back to reference Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10(6):454–456CrossRefPubMed Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10(6):454–456CrossRefPubMed
65.
go back to reference Zeng L et al (2016) Label-retaining assay enriches tumor-initiating cells in glioblastoma spheres cultivated in serum-free medium. Oncol Lett 12(2):815–824PubMedPubMedCentral Zeng L et al (2016) Label-retaining assay enriches tumor-initiating cells in glioblastoma spheres cultivated in serum-free medium. Oncol Lett 12(2):815–824PubMedPubMedCentral
Metadata
Title
Molecular markers in glioma
Authors
Kirsten Ludwig
Harley I. Kornblum
Publication date
01-09-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-017-2379-y

Other articles of this Issue 3/2017

Journal of Neuro-Oncology 3/2017 Go to the issue