Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2016

01-12-2016 | Topic Review

Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation

Authors: Ted K. Yanagihara, Heva J. Saadatmand, Tony J. C. Wang

Published in: Journal of Neuro-Oncology | Issue 3/2016

Login to get access

Abstract

Countless therapeutic strategies have been explored over many decades to prevent or slow the progression of glioblastoma. Despite radical changes in radiation management in other malignancies, there have been no major advances in the radiotherapeutic approach to glioblastoma in over 30 years. Past hopes to overcome inherent radioresistance with escalating doses have been met with frustration. However, prior clinical trials were performed before temozolomide, a radiosensitizer, altered the standard of care and this has renewed interest in dose escalation. Immunotherapy has led to further excitement, given the substantial responses that have been observed in other cancers when combined with high-dose radiation. In addition, advances in molecular profiling and neuroimaging have created new opportunities to improve patient selection for the most appropriate course of treatment. In this review, we outline past attempts to utilize radiosurgery in glioblastoma and focus on the potential to reintroduce this modality of dose escalation in the setting of modern and emerging systemic agents, molecular studies and imaging analyses.
Literature
1.
go back to reference Walker MD, Strike TA, Sheline GE (1979) An analysis of dose–effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731CrossRefPubMed Walker MD, Strike TA, Sheline GE (1979) An analysis of dose–effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731CrossRefPubMed
2.
go back to reference Roa W et al (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588CrossRefPubMed Roa W et al (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588CrossRefPubMed
3.
go back to reference Roa W et al (2015) International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 33(35):4145–4150CrossRefPubMed Roa W et al (2015) International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 33(35):4145–4150CrossRefPubMed
4.
go back to reference Minniti G et al (2015) Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 91(1):109–115CrossRefPubMed Minniti G et al (2015) Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 91(1):109–115CrossRefPubMed
5.
go back to reference Amelio D et al (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97(3):361–369CrossRefPubMed Amelio D et al (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97(3):361–369CrossRefPubMed
6.
go back to reference Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl Med 352:987–996CrossRef Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl Med 352:987–996CrossRef
7.
go back to reference Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466CrossRefPubMed Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466CrossRefPubMed
8.
go back to reference Loeffler JS, Alexander E, Shea M, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385PubMed Loeffler JS, Alexander E, Shea M, Wen PY, Fine HA, Kooy HM, Black PM (1992) Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10:1379–1385PubMed
9.
go back to reference Mehta MP, Masciopinto J, Rozental J, Levin A, Chappell R, Bastin K, Miles J, Turski P, Kubsad S, Mackie T, Kinsella T (1994) Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30(3):541–549CrossRefPubMed Mehta MP, Masciopinto J, Rozental J, Levin A, Chappell R, Bastin K, Miles J, Turski P, Kubsad S, Mackie T, Kinsella T (1994) Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30(3):541–549CrossRefPubMed
10.
go back to reference Buatti JM, Friedman WA, Bova FJ, Mendenhall WM (1995) Linac radiosurgery for high-grade gliomas: the university of Florida experience. Int J Radiat Oncol Biol Phys 32(1):205–210CrossRefPubMed Buatti JM, Friedman WA, Bova FJ, Mendenhall WM (1995) Linac radiosurgery for high-grade gliomas: the university of Florida experience. Int J Radiat Oncol Biol Phys 32(1):205–210CrossRefPubMed
11.
go back to reference Sarkaria JN, Mehta MP, Loeffler JS, Buatti JM, Chappell RJ, Levin AB, Alexander E, Friedman WA, Kinsella TJ (1995) Radiosurgery in the initial management of malignant gliomas survival comparison with the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 32(4):931–941CrossRefPubMed Sarkaria JN, Mehta MP, Loeffler JS, Buatti JM, Chappell RJ, Levin AB, Alexander E, Friedman WA, Kinsella TJ (1995) Radiosurgery in the initial management of malignant gliomas survival comparison with the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys 32(4):931–941CrossRefPubMed
12.
go back to reference Souhami L et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of radiation therapy oncology group 93–05 protocol. Int J Rad Oncol Biol Phys 60(3):853–860CrossRef Souhami L et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of radiation therapy oncology group 93–05 protocol. Int J Rad Oncol Biol Phys 60(3):853–860CrossRef
13.
go back to reference Gannett D et al (1995) Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Rad Oncol Biol Phys 33(2):461–468CrossRef Gannett D et al (1995) Stereotactic radiosurgery as an adjunct to surgery and external beam radiotherapy in the treatment of patients with malignant gliomas. Int J Rad Oncol Biol Phys 33(2):461–468CrossRef
14.
go back to reference Kondziolka D et al (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41(4):776–785CrossRefPubMed Kondziolka D et al (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41(4):776–785CrossRefPubMed
15.
go back to reference Shenouda G et al (1997) Radiosurgery and accelerated radiotherapy for patients with glioblastoma. Can J Neurol Sci 24(02):110–115CrossRefPubMed Shenouda G et al (1997) Radiosurgery and accelerated radiotherapy for patients with glioblastoma. Can J Neurol Sci 24(02):110–115CrossRefPubMed
16.
go back to reference Shrieve DC, Alexander E, Black PM, Wen PY, Fine HA, Kooy HM, Loeffler JS (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77CrossRefPubMed Shrieve DC, Alexander E, Black PM, Wen PY, Fine HA, Kooy HM, Loeffler JS (1999) Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost: prognostic factors and long-term outcome. J Neurosurg 90:72–77CrossRefPubMed
17.
go back to reference Nwokedi EC et al (2002) Gamma knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50(1):41–47PubMed Nwokedi EC et al (2002) Gamma knife stereotactic radiosurgery for patients with glioblastoma multiforme. Neurosurgery 50(1):41–47PubMed
18.
go back to reference Cho KH et al (2004) Stereotactic radiosurgery versus fractionated stereotactic radiotherapy boost for patients with glioblastoma multiforme. Technol Cancer Res Treat 3(1):41–49CrossRefPubMed Cho KH et al (2004) Stereotactic radiosurgery versus fractionated stereotactic radiotherapy boost for patients with glioblastoma multiforme. Technol Cancer Res Treat 3(1):41–49CrossRefPubMed
19.
go back to reference Hsieh PC et al (2005) Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 57:684–692CrossRefPubMed Hsieh PC et al (2005) Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 57:684–692CrossRefPubMed
20.
go back to reference Cardinale R et al (2006) A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys 65(5):1422–1428CrossRefPubMed Cardinale R et al (2006) A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys 65(5):1422–1428CrossRefPubMed
21.
go back to reference Lipani JD et al (2008) Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme. Technol Cancer Res Treat 7(3):249–255CrossRefPubMed Lipani JD et al (2008) Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme. Technol Cancer Res Treat 7(3):249–255CrossRefPubMed
22.
go back to reference Pouratian N et al (2009) Gamma knife radiosurgery after radiation therapy as an adjunctive treatment for glioblastoma. J Neurooncol 94(3):409–418CrossRefPubMed Pouratian N et al (2009) Gamma knife radiosurgery after radiation therapy as an adjunctive treatment for glioblastoma. J Neurooncol 94(3):409–418CrossRefPubMed
23.
go back to reference Larson DA, Gutin PH, McDermott M, Lamborn K et al (1996) Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 36(5):1045–1053CrossRefPubMed Larson DA, Gutin PH, McDermott M, Lamborn K et al (1996) Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 36(5):1045–1053CrossRefPubMed
24.
go back to reference Tsien CI et al (2012) Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res 18(1):273–279CrossRefPubMed Tsien CI et al (2012) Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res 18(1):273–279CrossRefPubMed
25.
go back to reference Shaw E, Scott C, Souhami L, Dinapoli R, Bahary JP, Kline R et al (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol 90-05. Int J Radiat Oncol Biol Phys 34(3):647–654CrossRefPubMed Shaw E, Scott C, Souhami L, Dinapoli R, Bahary JP, Kline R et al (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol 90-05. Int J Radiat Oncol Biol Phys 34(3):647–654CrossRefPubMed
26.
go back to reference Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47(2):291–298CrossRefPubMed Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47(2):291–298CrossRefPubMed
27.
go back to reference Park JL, Suh JH, Barnett GH, Reddy CA, Peereboom DM, Stevens GHJ, Cohen BH (2000) Survival after stereotactic radiosurgery for recurrent glioblastoma multiforme. J of Radiosurg 3(4):169–175CrossRef Park JL, Suh JH, Barnett GH, Reddy CA, Peereboom DM, Stevens GHJ, Cohen BH (2000) Survival after stereotactic radiosurgery for recurrent glioblastoma multiforme. J of Radiosurg 3(4):169–175CrossRef
28.
go back to reference Mahajan A, McCutcheon IE, Suki D, Chang EL, Hassenbusch SJ, Weinberg, JS et al (2005) Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J Neurosurg 103(2):210–217CrossRefPubMed Mahajan A, McCutcheon IE, Suki D, Chang EL, Hassenbusch SJ, Weinberg, JS et al (2005) Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J Neurosurg 103(2):210–217CrossRefPubMed
29.
go back to reference Kong DS et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051CrossRefPubMed Kong DS et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051CrossRefPubMed
30.
go back to reference Patel M, Siddiqui F, Jin JY, Mikkelsen T, Rosenblum M, Movsas B, Ryu S (2009) Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol 92(2):185–191CrossRefPubMed Patel M, Siddiqui F, Jin JY, Mikkelsen T, Rosenblum M, Movsas B, Ryu S (2009) Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol 92(2):185–191CrossRefPubMed
31.
go back to reference Bokstein F et al (2016) Stereotactic radiosurgery (SRS) in high-grade glioma: judicious selection of small target volumes improves results. J Neurooncol 126(3):551–557CrossRefPubMed Bokstein F et al (2016) Stereotactic radiosurgery (SRS) in high-grade glioma: judicious selection of small target volumes improves results. J Neurooncol 126(3):551–557CrossRefPubMed
32.
go back to reference Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349CrossRefPubMedPubMedCentral Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349CrossRefPubMedPubMedCentral
33.
go back to reference Camphausen K et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993PubMed Camphausen K et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993PubMed
34.
go back to reference Blanquicett C (2005) Antitumor efficacy of capecitabine and celecoxib in irradiated and lead-shielded, contralateral Human BxPC-3 pancreatic cancer xenografts. Clin Implic Abscopal Eff 11(24):8773–8781 Blanquicett C (2005) Antitumor efficacy of capecitabine and celecoxib in irradiated and lead-shielded, contralateral Human BxPC-3 pancreatic cancer xenografts. Clin Implic Abscopal Eff 11(24):8773–8781
35.
go back to reference Demaria S et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. 58(3):862–870 Demaria S et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. 58(3):862–870
36.
go back to reference Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388CrossRefPubMedPubMedCentral Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388CrossRefPubMedPubMedCentral
37.
go back to reference Shiraishi K et al (2008) Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α. Clin Cancer Res 14(4):1159–1166CrossRefPubMed Shiraishi K et al (2008) Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α. Clin Cancer Res 14(4):1159–1166CrossRefPubMed
38.
go back to reference Ehlers G, Fridman M (1973) Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 46(543):220–222CrossRefPubMed Ehlers G, Fridman M (1973) Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 46(543):220–222CrossRefPubMed
39.
go back to reference Rees GJ, Ross CM (1983) Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 56(661):63–66CrossRefPubMed Rees GJ, Ross CM (1983) Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 56(661):63–66CrossRefPubMed
41.
go back to reference Wersäll PJ et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45(4):493–497CrossRefPubMed Wersäll PJ et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45(4):493–497CrossRefPubMed
44.
go back to reference Drake CG, EJ Lipson, Brahmer JR (2013) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37CrossRefPubMedPubMedCentral Drake CG, EJ Lipson, Brahmer JR (2013) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37CrossRefPubMedPubMedCentral
45.
go back to reference Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell. Lung Cancer 373(17):1627–1639 Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell. Lung Cancer 373(17):1627–1639
46.
go back to reference Silver DJ et al (2016) The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro Oncol 18(2):153–159CrossRefPubMed Silver DJ et al (2016) The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro Oncol 18(2):153–159CrossRefPubMed
47.
go back to reference Andaloussi AE (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8(3):234–243CrossRefPubMedPubMedCentral Andaloussi AE (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8(3):234–243CrossRefPubMedPubMedCentral
48.
go back to reference Fecci PE et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Cell 66(6):3294–3302 Fecci PE et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Cell 66(6):3294–3302
49.
go back to reference Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599CrossRefPubMedPubMedCentral Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599CrossRefPubMedPubMedCentral
50.
go back to reference Raychaudhuri B et al (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122(2):293–301CrossRefPubMed Raychaudhuri B et al (2015) Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J Neurooncol 122(2):293–301CrossRefPubMed
51.
go back to reference Dubinski D et al (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neurooncol 18:807–818 Dubinski D et al (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neurooncol 18:807–818
53.
go back to reference Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133CrossRefPubMed Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133CrossRefPubMed
54.
go back to reference Nduom EK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neurooncol 18(2):195–205 Nduom EK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neurooncol 18(2):195–205
55.
go back to reference Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell. Lung Cancer 373(2):123–135 Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell. Lung Cancer 373(2):123–135
56.
57.
go back to reference Golden EB et al (2015) Local radiotherapy and granulocyte–macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803CrossRefPubMed Golden EB et al (2015) Local radiotherapy and granulocyte–macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803CrossRefPubMed
58.
go back to reference Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2(153.10):3389 Demaria S, Formenti SC (2012) Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2(153.10):3389
59.
go back to reference Siva S et al (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356(1):82–90CrossRefPubMed Siva S et al (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356(1):82–90CrossRefPubMed
60.
go back to reference Schaue D et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310CrossRefPubMed Schaue D et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310CrossRefPubMed
61.
go back to reference Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523CrossRefPubMed Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523CrossRefPubMed
62.
go back to reference Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy. New insights into tumor radioresistance. J Natl Cancer Inst 98(24):1755–1757CrossRefPubMed Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy. New insights into tumor radioresistance. J Natl Cancer Inst 98(24):1755–1757CrossRefPubMed
63.
go back to reference Phillips TM, McBride WH, Pajonk F (2006) The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785CrossRefPubMed Phillips TM, McBride WH, Pajonk F (2006) The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785CrossRefPubMed
64.
go back to reference Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554CrossRefPubMed Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554CrossRefPubMed
65.
go back to reference Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMed Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMed
66.
go back to reference Stupp R et al (2012) NovoTTF-100 A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202CrossRefPubMed Stupp R et al (2012) NovoTTF-100 A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202CrossRefPubMed
67.
go back to reference Stupp R et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314(23):2535–2543CrossRefPubMed Stupp R et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314(23):2535–2543CrossRefPubMed
68.
go back to reference Yanagihara TK, Wang TJ (2014) Diffusion-weighted imaging of the brain for glioblastoma: implications for radiation oncology. Appl Radiat Oncol Dec:5–13 Yanagihara TK, Wang TJ (2014) Diffusion-weighted imaging of the brain for glioblastoma: implications for radiation oncology. Appl Radiat Oncol Dec:5–13
69.
go back to reference Khayal IS et al (2010) Evaluation of diffusion parameters as early biomarkers of disease progression in glioblastoma multiforme. Neuro Oncol 12(9):908–916CrossRefPubMedPubMedCentral Khayal IS et al (2010) Evaluation of diffusion parameters as early biomarkers of disease progression in glioblastoma multiforme. Neuro Oncol 12(9):908–916CrossRefPubMedPubMedCentral
70.
go back to reference Pope WB et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment 1. Radiology 252(1):182–189CrossRefPubMed Pope WB et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment 1. Radiology 252(1):182–189CrossRefPubMed
71.
go back to reference Pope WB et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study. J Neurooncol 108(3):491–498CrossRefPubMedPubMedCentral Pope WB et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study. J Neurooncol 108(3):491–498CrossRefPubMedPubMedCentral
72.
go back to reference Hamstra DA et al (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26(20):3387–3394CrossRefPubMedPubMedCentral Hamstra DA et al (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26(20):3387–3394CrossRefPubMedPubMedCentral
73.
go back to reference Hamstra DA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102(46):16759–16764CrossRefPubMedPubMedCentral Hamstra DA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102(46):16759–16764CrossRefPubMedPubMedCentral
74.
go back to reference Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529CrossRefPubMedPubMedCentral Moffat BA et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102(15):5524–5529CrossRefPubMedPubMedCentral
75.
go back to reference Cha J et al (2013) Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Eur Radiol 23(3):879–886CrossRefPubMed Cha J et al (2013) Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Eur Radiol 23(3):879–886CrossRefPubMed
76.
go back to reference Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173CrossRefPubMed Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173CrossRefPubMed
77.
go back to reference Verhaak RGW et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefPubMedPubMedCentral Verhaak RGW et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110CrossRefPubMedPubMedCentral
78.
go back to reference Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346CrossRefPubMed Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346CrossRefPubMed
Metadata
Title
Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation
Authors
Ted K. Yanagihara
Heva J. Saadatmand
Tony J. C. Wang
Publication date
01-12-2016
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2016
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2270-2

Other articles of this Issue 3/2016

Journal of Neuro-Oncology 3/2016 Go to the issue