Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2016

01-12-2016 | Laboratory Investigation

OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/M arrest in brain cancer cells

Authors: Malek Hossein Asadi, Khosrow Khalifeh, Seyed Javad Mowla

Published in: Journal of Neuro-Oncology | Issue 3/2016

Login to get access

Abstract

The new claim about the origin of cancer known as Cancer Stem Cell theory states that a somatic differentiated cell can dedifferentiated or reprogrammed for regaining the cancer cell features. It has been recently shown that expression of stemness factors such as Oct4, Sox2, Nanog and Klf4, in a variety of somatic cancers can leads to development of tumorogenesis. Here, the expression of Oct4 variants were evaluated in brain tumor tissues by quantitative RT-PCR and immunohistochemical (IHC) analysis. In next phase of our study, the expression of Oct4B1 was knock-down in brain cancer cell lines and its effect on cell cycle was assessed. Finally, in order to get insights into sequence-structure-function relationships of Oct4 isofroms, their sequences were analysed using bioinformatic tools. Our data revealed that all three variants of Oct4 are expressed in different types of brain cancer. The expression level of Oct4B1, in contast to Oct4B, was much higher in high-grade brain tumors compared with low-grade ones. In line with qPCR, the expression of Oct4A and B isofroms was confirmed with IHC in different types of brain tumors. Moreover, as a result of the suppression of Oct4B1 expression, the brain cancer cells were arrested in G2/M phase of cell cycle. Bioinfromatics data indicated that the predicted Oct4B1 protein have DNA binding properties. All together, our findings suggest that Oct4B1 has a potential role in tumorigenesis of brain cancer and can be considered as a new tumor marker with potential value in diagnosis and treatment of brain cancer.
Literature
1.
3.
go back to reference Cao L, Li C, Shen S, Yan Y, Ji W, Wang J, Qian H, Jiang X, Li Z, Wu M (2013) OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC Cancer 13:82CrossRefPubMedPubMedCentral Cao L, Li C, Shen S, Yan Y, Ji W, Wang J, Qian H, Jiang X, Li Z, Wu M (2013) OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC Cancer 13:82CrossRefPubMedPubMedCentral
4.
go back to reference Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY (2010) Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 39:622–626CrossRefPubMed Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY (2010) Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 39:622–626CrossRefPubMed
5.
go back to reference Asadi MH, Derakhshani A, Mowla SJ (2014) Concomitant upregulation of nucleostemin and downregulation of Sox2 and Klf4 in gastric adenocarcinoma. Tumour Biol 35:7177–7185CrossRefPubMed Asadi MH, Derakhshani A, Mowla SJ (2014) Concomitant upregulation of nucleostemin and downregulation of Sox2 and Klf4 in gastric adenocarcinoma. Tumour Biol 35:7177–7185CrossRefPubMed
6.
go back to reference Rothenberg ME, Clarke MF, Diehn M (2010) The Myc connection: ES cells and cancer. Cell 143:184–186CrossRefPubMed Rothenberg ME, Clarke MF, Diehn M (2010) The Myc connection: ES cells and cancer. Cell 143:184–186CrossRefPubMed
7.
go back to reference Clarissa NA, Brad AB (2015) Enrichment of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, and Sox2 in benign and malignant vascular tumors. BMC Clin Pathol 15:18CrossRef Clarissa NA, Brad AB (2015) Enrichment of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, and Sox2 in benign and malignant vascular tumors. BMC Clin Pathol 15:18CrossRef
9.
go back to reference Tsai CC, Su PF, Huang YF, Yew TL, Hung SC (2012) Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47:169–182CrossRefPubMed Tsai CC, Su PF, Huang YF, Yew TL, Hung SC (2012) Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47:169–182CrossRefPubMed
10.
go back to reference Bouillez A, Rajabi H, Pitroda S, Jin C, Alam M, Kharbanda A, Tagde A, Wong KK, Kufe D (2016) Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas. Cancer Res 76:1538–1548CrossRefPubMed Bouillez A, Rajabi H, Pitroda S, Jin C, Alam M, Kharbanda A, Tagde A, Wong KK, Kufe D (2016) Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas. Cancer Res 76:1538–1548CrossRefPubMed
11.
go back to reference Tagde A, Rajabi H, Bouillez A, Alam M, Gali R, Bailey S, Tai YT, Hideshima T, Anderson K, Avigan D, Kufe D (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587–2597CrossRefPubMed Tagde A, Rajabi H, Bouillez A, Alam M, Gali R, Bailey S, Tai YT, Hideshima T, Anderson K, Avigan D, Kufe D (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587–2597CrossRefPubMed
12.
go back to reference Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, Kufe D (2016) DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene. doi:10.1038/onc.2016.180 PubMed Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, Kufe D (2016) DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene. doi:10.​1038/​onc.​2016.​180 PubMed
13.
go back to reference Tagde A, Rajabi H, Stroopinsky D, Gali R, Alam M, Bouillez A, Kharbanda S, Stone R, Avigan D, Kufe D (2016) MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget 7:38974–38987PubMed Tagde A, Rajabi H, Stroopinsky D, Gali R, Alam M, Bouillez A, Kharbanda S, Stone R, Avigan D, Kufe D (2016) MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget 7:38974–38987PubMed
14.
go back to reference Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342CrossRefPubMed Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342CrossRefPubMed
15.
go back to reference Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, Raina D, Hasegawa M, Suzuki Y, Tagde A, Bronson RT, Weichselbaum R, Kufe D (2015) MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 34:5187–5197CrossRefPubMedPubMedCentral Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, Raina D, Hasegawa M, Suzuki Y, Tagde A, Bronson RT, Weichselbaum R, Kufe D (2015) MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 34:5187–5197CrossRefPubMedPubMedCentral
16.
go back to reference Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, Tagde A, Maeda T, Hiraki M, Sukhatme VP, Kufe D (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769PubMedPubMedCentral Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, Tagde A, Maeda T, Hiraki M, Sukhatme VP, Kufe D (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769PubMedPubMedCentral
17.
go back to reference Lopez-Bertoni H, Lal B, Li A, Caplan M, Guerrero-Cázares H, Eberhart CG, Quiñones-Hinojosa A, Glas M, Scheffler B, Laterra J, Li Y (2015) DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34:3994–4004CrossRefPubMed Lopez-Bertoni H, Lal B, Li A, Caplan M, Guerrero-Cázares H, Eberhart CG, Quiñones-Hinojosa A, Glas M, Scheffler B, Laterra J, Li Y (2015) DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34:3994–4004CrossRefPubMed
18.
go back to reference Takeda J, Seino S, Bell GI (1992) Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 20:4613–4620CrossRefPubMedPubMedCentral Takeda J, Seino S, Bell GI (1992) Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 20:4613–4620CrossRefPubMedPubMedCentral
19.
go back to reference Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW (2008) OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26:3068–3074CrossRefPubMed Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW (2008) OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26:3068–3074CrossRefPubMed
20.
go back to reference Asadi MH, Mowla SJ, Fathi F, Aleyasin A, Asadzadeh J, Atlasi Y (2011) OCT4B1, a novel spliced variant of OCT4, is highly expressed in gastric cancer and acts as an antiapoptotic factor. Int J Cancer 128:2645–2652CrossRefPubMed Asadi MH, Mowla SJ, Fathi F, Aleyasin A, Asadzadeh J, Atlasi Y (2011) OCT4B1, a novel spliced variant of OCT4, is highly expressed in gastric cancer and acts as an antiapoptotic factor. Int J Cancer 128:2645–2652CrossRefPubMed
21.
go back to reference Asadzadeh J, Asadi MH, Shakhssalim N, Rafiee MR, Kalhor HR, Tavallaei M, Mowla SJ (2012) A plausible anti-apoptotic role of up-regulated OCT4B1 in bladder tumors. Urol J 9:574–580PubMed Asadzadeh J, Asadi MH, Shakhssalim N, Rafiee MR, Kalhor HR, Tavallaei M, Mowla SJ (2012) A plausible anti-apoptotic role of up-regulated OCT4B1 in bladder tumors. Urol J 9:574–580PubMed
22.
go back to reference Mirzaei MR, Najafi A, Arababadi MK, Asadi MH, Mowla SJ (2014) Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines. Tumour Biol 35:9999–10009CrossRefPubMed Mirzaei MR, Najafi A, Arababadi MK, Asadi MH, Mowla SJ (2014) Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines. Tumour Biol 35:9999–10009CrossRefPubMed
23.
go back to reference Mirzaei MR, Kazemi Arababadi M, Asadi MH, Mowla SJ (2016) Altered expression of high molecular weight heat shock proteins after OCT4B1 suppression in human tumor cell lines. Cell J 17:608–616PubMedPubMedCentral Mirzaei MR, Kazemi Arababadi M, Asadi MH, Mowla SJ (2016) Altered expression of high molecular weight heat shock proteins after OCT4B1 suppression in human tumor cell lines. Cell J 17:608–616PubMedPubMedCentral
24.
go back to reference Mirzaei MR, Asadi MH, Mowla SJ, Hassanshahi G, Ahmadi Z (2016) Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines. Iran J Basic Med Sci 19:187–193PubMedPubMedCentral Mirzaei MR, Asadi MH, Mowla SJ, Hassanshahi G, Ahmadi Z (2016) Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines. Iran J Basic Med Sci 19:187–193PubMedPubMedCentral
25.
go back to reference Farashahi Yazd E, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, Mowla SJ (2011) OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett 309:170–175CrossRefPubMed Farashahi Yazd E, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, Mowla SJ (2011) OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett 309:170–175CrossRefPubMed
26.
go back to reference Sonawane P, Cho HE, Tagde A, Verlekar D, Yu AL, Reynolds CP, Kang MH (2014) Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma. Br J Pharmacol 171:5330–5344CrossRefPubMedPubMedCentral Sonawane P, Cho HE, Tagde A, Verlekar D, Yu AL, Reynolds CP, Kang MH (2014) Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma. Br J Pharmacol 171:5330–5344CrossRefPubMedPubMedCentral
27.
go back to reference Tagde A, Singh H, Kang MH, Reynolds CP (2014) The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J 4:e229CrossRefPubMedPubMedCentral Tagde A, Singh H, Kang MH, Reynolds CP (2014) The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J 4:e229CrossRefPubMedPubMedCentral
28.
go back to reference Rice P, Longden I, Bleasby A.EMBOSS (2000) The European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMed Rice P, Longden I, Bleasby A.EMBOSS (2000) The European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMed
29.
go back to reference Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699CrossRef Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699CrossRef
30.
go back to reference McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:597–600CrossRef McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:597–600CrossRef
31.
go back to reference Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentral Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentral
32.
go back to reference Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:348–352CrossRef Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:348–352CrossRef
33.
go back to reference Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:252–258CrossRef Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:252–258CrossRef
34.
go back to reference Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefPubMed Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefPubMed
35.
go back to reference Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Proteomics protocols handbook. Humana Press, New York Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Proteomics protocols handbook. Humana Press, New York
36.
go back to reference Esch D, Vahokoski J, Groves MR, Pogenberg V, Cojocaru V, Vom Bruch H et al (2013) A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat Cell Biol 15:295–301CrossRefPubMed Esch D, Vahokoski J, Groves MR, Pogenberg V, Cojocaru V, Vom Bruch H et al (2013) A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat Cell Biol 15:295–301CrossRefPubMed
Metadata
Title
OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/M arrest in brain cancer cells
Authors
Malek Hossein Asadi
Khosrow Khalifeh
Seyed Javad Mowla
Publication date
01-12-2016
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2016
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2255-1

Other articles of this Issue 3/2016

Journal of Neuro-Oncology 3/2016 Go to the issue