Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2016

01-10-2016 | Topic Review

Shining light on neurosurgery diagnostics using Raman spectroscopy

Authors: Brandy Broadbent, James Tseng, Rachel Kast, Thomas Noh, Michelle Brusatori, Steven N. Kalkanis, Gregory W. Auner

Published in: Journal of Neuro-Oncology | Issue 1/2016

Login to get access

Abstract

Surgical excision of brain tumors provides a means of cytoreduction and diagnosis while minimizing neurologic deficit and improving overall survival. Despite advances in functional and three-dimensional stereotactic navigation and intraoperative magnetic resonance imaging, delineating tissue in real time with physiological confirmation is challenging. Raman spectroscopy is a promising investigative and diagnostic tool for neurosurgery, which provides rapid, non-destructive molecular characterization in vivo or in vitro for biopsy, margin assessment, or laboratory uses. The Raman Effect occurs when light temporarily changes a bond’s polarizability, causing change in the vibrational frequency, with a corresponding change in energy/wavelength of the scattered photon. The recorded inelastic scattering results in a “fingerprint” or Raman spectrum of the constituent under investigation. The amount, location, and intensity of peaks in the fingerprint vary based on the amount of vibrational bonds in a molecule and their ensemble interactions with each other. Distinct differences between various pathologic conditions are shown as different intensities of the same peak, or shifting of a peak based on the binding conformation. Raman spectroscopy has potential for integration into clinical practice, particularly in distinguishing normal and diseased tissue as an adjunct to standard pathologic diagnosis. Further, development of fiber-optic Raman probes that fit through the instrument port of a standard endoscope now allows researchers and clinicians to utilize spectroscopic information for evaluation of in vivo tissue. This review highlights the need for such an instrument, summarizes neurosurgical Raman work performed to date, and discusses the future applications of neurosurgical Raman spectroscopy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F (2013) GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [internet]. International Agency for Research on Cancer, Lyon. globocan IARC FR (Accessed 10 Oct 2014) Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F (2013) GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [internet]. International Agency for Research on Cancer, Lyon. globocan IARC FR (Accessed 10 Oct 2014)
2.
go back to reference Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE (2014) Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 32:774–782CrossRefPubMedPubMedCentral Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE (2014) Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 32:774–782CrossRefPubMedPubMedCentral
3.
go back to reference Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J Neurosurg 115:3–8CrossRefPubMed Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J Neurosurg 115:3–8CrossRefPubMed
4.
go back to reference Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, Solheim O (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1881–1888CrossRefPubMed Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, Solheim O (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1881–1888CrossRefPubMed
5.
go back to reference Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed
6.
go back to reference Wu J-S, Zhou L-F, Tang W-J, Mao Y, Hu J, Song Y-Y, Hong X-N, Du G-H (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935–949CrossRefPubMed Wu J-S, Zhou L-F, Tang W-J, Mao Y, Hu J, Song Y-Y, Hong X-N, Du G-H (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935–949CrossRefPubMed
7.
go back to reference Coburger J, Scheuerle A, Kapapa T, Engelke J, Thal DR, Wirtz CR, König R (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38:499–509CrossRefPubMed Coburger J, Scheuerle A, Kapapa T, Engelke J, Thal DR, Wirtz CR, König R (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38:499–509CrossRefPubMed
8.
go back to reference Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, Casali C, Legnani F, Mattei L, Saladino A (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552CrossRefPubMed Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, Casali C, Legnani F, Mattei L, Saladino A (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552CrossRefPubMed
9.
go back to reference Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgård G (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir 155:973–980CrossRefPubMedPubMedCentral Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgård G (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir 155:973–980CrossRefPubMedPubMedCentral
10.
go back to reference Chang EF, Clark A, Smith JS, Polley M-Y, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping–guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg 114:566–573CrossRefPubMed Chang EF, Clark A, Smith JS, Polley M-Y, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping–guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg 114:566–573CrossRefPubMed
11.
go back to reference De Witt HPC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565CrossRef De Witt HPC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565CrossRef
12.
go back to reference Stummer W, Tonn J-C, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study: clinical article. J Neurosurg 114:613–623CrossRefPubMed Stummer W, Tonn J-C, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study: clinical article. J Neurosurg 114:613–623CrossRefPubMed
13.
go back to reference Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA (2014) Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg 82:175–185CrossRefPubMed Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA (2014) Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg 82:175–185CrossRefPubMed
14.
go back to reference Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, Liu X, Wiley JS, Vestal ML, Ramkissoon SH (2014) Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci 111:11121–11126CrossRefPubMedPubMedCentral Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, Liu X, Wiley JS, Vestal ML, Ramkissoon SH (2014) Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci 111:11121–11126CrossRefPubMedPubMedCentral
15.
go back to reference Butte PV, Mamelak AN, Nuno M, Bannykh SI, Black KL, Marcu L (2011) Fluorescence lifetime spectroscopy for guided therapy of brain tumors. Neuroimage 54:S125–S135CrossRefPubMed Butte PV, Mamelak AN, Nuno M, Bannykh SI, Black KL, Marcu L (2011) Fluorescence lifetime spectroscopy for guided therapy of brain tumors. Neuroimage 54:S125–S135CrossRefPubMed
16.
go back to reference Sun Y, Hatami N, Yee M, Phipps J, Elson DS, Gorin F, Schrot RJ, Marcu L (2010) Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 15:056022–056025CrossRefPubMedPubMedCentral Sun Y, Hatami N, Yee M, Phipps J, Elson DS, Gorin F, Schrot RJ, Marcu L (2010) Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 15:056022–056025CrossRefPubMedPubMedCentral
17.
go back to reference Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum PR, Chesnokova A, Ljubimova JY, Black K (2014) Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 36(2):E1CrossRefPubMed Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum PR, Chesnokova A, Ljubimova JY, Black K (2014) Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 36(2):E1CrossRefPubMed
18.
go back to reference Shinoda J, Yano H, Yoshimura S-I, Okumura A, Kaku Y, Iwama T, Sakai N (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium: technical note. J Neurosurg 99:597–603CrossRefPubMed Shinoda J, Yano H, Yoshimura S-I, Okumura A, Kaku Y, Iwama T, Sakai N (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium: technical note. J Neurosurg 99:597–603CrossRefPubMed
19.
go back to reference Orringer DA, Koo Y-EL, Chen T, Kim G, Hah HJ, Xu H, Wang S, Keep R, Philbert MA, Kopelman R (2009) In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery 64:965–971CrossRefPubMedPubMedCentral Orringer DA, Koo Y-EL, Chen T, Kim G, Hah HJ, Xu H, Wang S, Keep R, Philbert MA, Kopelman R (2009) In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery 64:965–971CrossRefPubMedPubMedCentral
20.
go back to reference Raman C (1928) A new radiation. Indian J Phys 2:11 Raman C (1928) A new radiation. Indian J Phys 2:11
21.
go back to reference Chase B (1994) A new generation of Raman instrumentation. Appl Spectrosc 48(7):14A–19ACrossRef Chase B (1994) A new generation of Raman instrumentation. Appl Spectrosc 48(7):14A–19ACrossRef
22.
go back to reference Campbell DPR, White JR (2000) Polymer characterization: physical techniques, 2nd edn. Stanley Thornes Publishers Ltd Campbell DPR, White JR (2000) Polymer characterization: physical techniques, 2nd edn. Stanley Thornes Publishers Ltd
23.
go back to reference Caroline ML, Vasudevan S (2009) Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material. Materials Lett 63:41–44CrossRef Caroline ML, Vasudevan S (2009) Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material. Materials Lett 63:41–44CrossRef
24.
go back to reference Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Applied Spectrosc Rev 42:493–541CrossRef Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Applied Spectrosc Rev 42:493–541CrossRef
26.
go back to reference Nelson DL, Lehninger AL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. W. H. Freeman and Company, New York Nelson DL, Lehninger AL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. W. H. Freeman and Company, New York
28.
go back to reference Tashibu K (1990) Analysis of water content in rat brain using Raman spectroscopy. No To Shinkei 42:999–1004PubMed Tashibu K (1990) Analysis of water content in rat brain using Raman spectroscopy. No To Shinkei 42:999–1004PubMed
29.
go back to reference Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693CrossRefPubMed Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW (2014) Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev 33:673–693CrossRefPubMed
30.
go back to reference Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y (1994) Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc 25:25–29CrossRef Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y (1994) Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc 25:25–29CrossRef
31.
go back to reference Koljenovic S, Schut TB, Wolthuis Rd, De Jong B, Santos L, Caspers PJ, Kros JM, Puppels GJ (2005) Tissue characterization using high wave number Raman spectroscopy. J Biomed Opt 10:031116–03111611CrossRefPubMed Koljenovic S, Schut TB, Wolthuis Rd, De Jong B, Santos L, Caspers PJ, Kros JM, Puppels GJ (2005) Tissue characterization using high wave number Raman spectroscopy. J Biomed Opt 10:031116–03111611CrossRefPubMed
32.
go back to reference Koljenovic S, Schut T, Vincent A, Kros J, Puppels G (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77:7958–7965CrossRefPubMed Koljenovic S, Schut T, Vincent A, Kros J, Puppels G (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77:7958–7965CrossRefPubMed
33.
go back to reference Krafft C, Miljanic S, Sobottka SB, Schackert G, Salzer R (2003) Near infrared Raman spectroscopy to study the composition of human brain tissue and tumors. In: Wagnieres G (ed) Diagnostic optical spectroscopy in biomedicine II: proceedings of SPIE, vol 5141. SPIE, Munich, pp 230–236CrossRef Krafft C, Miljanic S, Sobottka SB, Schackert G, Salzer R (2003) Near infrared Raman spectroscopy to study the composition of human brain tissue and tumors. In: Wagnieres G (ed) Diagnostic optical spectroscopy in biomedicine II: proceedings of SPIE, vol 5141. SPIE, Munich, pp 230–236CrossRef
34.
go back to reference Campanella R (1991) Membrane lipids modifications in human gliomas of different degree of malignancy. J Neurosurg Sci 36:11–25 Campanella R (1991) Membrane lipids modifications in human gliomas of different degree of malignancy. J Neurosurg Sci 36:11–25
35.
go back to reference Zhang C, Moore LM, Li X, Yung WA, Zhang W (2013) IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro oncol 15:1114–1126CrossRefPubMedPubMedCentral Zhang C, Moore LM, Li X, Yung WA, Zhang W (2013) IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro oncol 15:1114–1126CrossRefPubMedPubMedCentral
36.
go back to reference Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T (2013) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5:89–102CrossRef Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T (2013) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5:89–102CrossRef
37.
go back to reference Bergholt M, Zheng W, Lin K, Ho K, Teh M, Yeoh K, So JY, Huang Z (2011) In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol Cancer Res Treat 10:103–112PubMed Bergholt M, Zheng W, Lin K, Ho K, Teh M, Yeoh K, So JY, Huang Z (2011) In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol Cancer Res Treat 10:103–112PubMed
38.
go back to reference Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, So JBY, Huang Z (2010) Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach. Analyst 135:3162–3168CrossRefPubMed Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, So JBY, Huang Z (2010) Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach. Analyst 135:3162–3168CrossRefPubMed
39.
go back to reference Duraipandian S, Mo J, Zheng W, Huang Z (2014) Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation. Analyst 139:5379–5386CrossRefPubMed Duraipandian S, Mo J, Zheng W, Huang Z (2014) Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation. Analyst 139:5379–5386CrossRefPubMed
40.
go back to reference Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feld MS (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66:3317–3322CrossRefPubMed Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feld MS (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66:3317–3322CrossRefPubMed
41.
go back to reference Banerjee H, Zhang L (2007) Deciphering the finger prints of brain cancer astrocytoma in comparison to astrocytes by using near infrared Raman spectroscopy. Mol Cell Biochem 295:237–240CrossRefPubMed Banerjee H, Zhang L (2007) Deciphering the finger prints of brain cancer astrocytoma in comparison to astrocytes by using near infrared Raman spectroscopy. Mol Cell Biochem 295:237–240CrossRefPubMed
42.
go back to reference Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM, Raghunathan A, Poisson LM, Auner GW (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485CrossRefPubMed Kalkanis SN, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM, Raghunathan A, Poisson LM, Auner GW (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485CrossRefPubMed
43.
go back to reference Kast R, Auner G, Rosenblum M, Mikkelsen T, Yurgelevic S, Raghunathan A, Poisson L, Kalkanis S (2014) Raman molecular imaging of brain frozen tissue sections. J Neurooncol 120:55–62CrossRefPubMed Kast R, Auner G, Rosenblum M, Mikkelsen T, Yurgelevic S, Raghunathan A, Poisson L, Kalkanis S (2014) Raman molecular imaging of brain frozen tissue sections. J Neurooncol 120:55–62CrossRefPubMed
44.
go back to reference Kast R, Auner G, Yurgelevic S, Broadbent B, Raghunathan A, Poisson LM, Mikkelsen T, Rosenblum ML, Kalkanis SN (2015) Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. J Neurooncol 125:287–295CrossRefPubMed Kast R, Auner G, Yurgelevic S, Broadbent B, Raghunathan A, Poisson LM, Mikkelsen T, Rosenblum ML, Kalkanis SN (2015) Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. J Neurooncol 125:287–295CrossRefPubMed
45.
go back to reference Tanahashi K, Natsume A, Ohka F, Momota H, Kato A, Motomura K, Watabe N, Muraishi S, Nakahara H, Saito Y (2014) Assessment of tumor cells in a mouse model of diffuse infiltrative glioma by Raman spectroscopy. Biomed Res Int 2014:860241.CrossRefPubMedPubMedCentral Tanahashi K, Natsume A, Ohka F, Momota H, Kato A, Motomura K, Watabe N, Muraishi S, Nakahara H, Saito Y (2014) Assessment of tumor cells in a mouse model of diffuse infiltrative glioma by Raman spectroscopy. Biomed Res Int 2014:860241.CrossRefPubMedPubMedCentral
46.
go back to reference Desroches J, Jermyn M, Mok K, Lemieux-Leduc C, Mercier J, St-Arnaud K, Urmey K, Guiot M-C, Marple E, Petrecca K (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397CrossRefPubMedPubMedCentral Desroches J, Jermyn M, Mok K, Lemieux-Leduc C, Mercier J, St-Arnaud K, Urmey K, Guiot M-C, Marple E, Petrecca K (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397CrossRefPubMedPubMedCentral
47.
go back to reference Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot M-C, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra219CrossRef Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot M-C, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra219CrossRef
48.
go back to reference Verisante Technology, Inc. Announces Brain Tumour Study in the UK (2015). Verisante press release 2015 Verisante Technology, Inc. Announces Brain Tumour Study in the UK (2015). Verisante press release 2015
49.
go back to reference Xie W, Schlucker S (2013) Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344CrossRefPubMed Xie W, Schlucker S (2013) Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344CrossRefPubMed
50.
go back to reference Buckley K, Kerns JG, Parker AW, Goodship AE, Matousek P (2014) Decomposition of in vivo spatially offset Raman spectroscopy data using multivariate analysis techniques. J Raman Spectrosc 45:188–192CrossRef Buckley K, Kerns JG, Parker AW, Goodship AE, Matousek P (2014) Decomposition of in vivo spatially offset Raman spectroscopy data using multivariate analysis techniques. J Raman Spectrosc 45:188–192CrossRef
51.
go back to reference Keller MD, Wilson RH, Mycek M-A, Mahadevan-Jansen A (2010) Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis. Appl Spectrosc 64:607–614CrossRefPubMed Keller MD, Wilson RH, Mycek M-A, Mahadevan-Jansen A (2010) Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis. Appl Spectrosc 64:607–614CrossRefPubMed
52.
go back to reference Zumbusch A, Müller M (2007) Coherent anti-Stokes Raman scattering microscopy. Chem Phys Chem 8:2156–2170PubMed Zumbusch A, Müller M (2007) Coherent anti-Stokes Raman scattering microscopy. Chem Phys Chem 8:2156–2170PubMed
53.
go back to reference Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861CrossRefPubMedPubMedCentral Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861CrossRefPubMedPubMedCentral
54.
go back to reference Freudiger CW, Xie XS (2011) In vivo imaging with stimulated Raman scattering microscopy. Opt Photon News 22:27–27CrossRef Freudiger CW, Xie XS (2011) In vivo imaging with stimulated Raman scattering microscopy. Opt Photon News 22:27–27CrossRef
Metadata
Title
Shining light on neurosurgery diagnostics using Raman spectroscopy
Authors
Brandy Broadbent
James Tseng
Rachel Kast
Thomas Noh
Michelle Brusatori
Steven N. Kalkanis
Gregory W. Auner
Publication date
01-10-2016
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2016
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2223-9

Other articles of this Issue 1/2016

Journal of Neuro-Oncology 1/2016 Go to the issue