Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2015

01-01-2015 | Clinical Study

Expert-validated CSF segmentation of MNI atlas enhances accuracy of virtual glioma growth patterns

Authors: A. Amelot, E. Stretton, H. Delingette, N. Ayache, S. Froelich, E. Mandonnet

Published in: Journal of Neuro-Oncology | Issue 2/2015

Login to get access

Abstract

Biomathematical modeling of glioma growth has been developed to optimize treatments delivery and to evaluate their efficacy. Simulations currently make use of anatomical knowledge from standard MRI atlases. For example, cerebrospinal fluid (CSF) spaces are obtained by automatic thresholding of the MNI atlas, leading to an approximate representation of real anatomy. To correct such inaccuracies, an expert-revised CSF segmentation map of the MNI atlas was built. Several virtual glioma growth patterns of different locations were generated, with and without using the expert-revised version of the MNI atlas. The adequacy between virtual and radiologically observed growth patterns was clearly higher when simulations were based on the expert-revised atlas. This work emphasizes the need for close collaboration between clinicians and researchers in the field of brain tumor modeling.
Literature
1.
go back to reference Bondiau P-Y, Konukoglu E, Clatz O, Delingette H, Frenay M, Paquis P (2011) Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins. Phys Med 27(2):103–108PubMedCrossRef Bondiau P-Y, Konukoglu E, Clatz O, Delingette H, Frenay M, Paquis P (2011) Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins. Phys Med 27(2):103–108PubMedCrossRef
2.
go back to reference Corwin D, Holdsworth C, Rockne RC, Trister AD, Mrugala MM, Rockhill JK, Stewart RD, Phillips M, Swanson KR (2013) Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma. PloS One 8(11):e79115PubMedCentralPubMedCrossRef Corwin D, Holdsworth C, Rockne RC, Trister AD, Mrugala MM, Rockhill JK, Stewart RD, Phillips M, Swanson KR (2013) Toward patient-specific, biologically optimized radiation therapy plans for the treatment of glioblastoma. PloS One 8(11):e79115PubMedCentralPubMedCrossRef
3.
go back to reference Ribba B, Kaloshi G, Peyre M, Ricard D, Calvez V, Tod M, Čajavec-Bernard B, Idbaih A, Psimaras D, Dainese Linda et al (2012) A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res 18(18):5071–5080PubMedCrossRef Ribba B, Kaloshi G, Peyre M, Ricard D, Calvez V, Tod M, Čajavec-Bernard B, Idbaih A, Psimaras D, Dainese Linda et al (2012) A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res 18(18):5071–5080PubMedCrossRef
4.
go back to reference Rockne R, Alvord EC Jr, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58(4–5):561–578PubMedCentralPubMedCrossRef Rockne R, Alvord EC Jr, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58(4–5):561–578PubMedCentralPubMedCrossRef
6.
go back to reference Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock Anne L, Bridge Carly A, Lai Albert, Cloughesy Timothy F, Mrugala Maciej M et al (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PloS One 8(1):e51951PubMedCentralPubMedCrossRef Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock Anne L, Bridge Carly A, Lai Albert, Cloughesy Timothy F, Mrugala Maciej M et al (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PloS One 8(1):e51951PubMedCentralPubMedCrossRef
7.
go back to reference Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius Katy, Wardlaw Joanna M, Cloughesy T, Spence AM, Rockne R et al (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69(23):9133–9140PubMedCentralPubMedCrossRef Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius Katy, Wardlaw Joanna M, Cloughesy T, Spence AM, Rockne R et al (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69(23):9133–9140PubMedCentralPubMedCrossRef
8.
go back to reference Stretton E, Mandonnet E, Geremia E, Menze BH, Delingette H, Ayache N (2012) Predicting the location of glioma recurrence after a resection surgery. Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2012 Stretton E, Mandonnet E, Geremia E, Menze BH, Delingette H, Ayache N (2012) Predicting the location of glioma recurrence after a resection surgery. Medical Image Computing and Computer-Assisted Intervention, MICCAI, 2012
9.
go back to reference Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102–S102CrossRef Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102–S102CrossRef
10.
go back to reference Cruywagen G, Woodward D, Tracqui P, Bartoo G, Murray J, Alvord E (1995) The modelling of diffusive tumours. J Biol Syst 3:937–945CrossRef Cruywagen G, Woodward D, Tracqui P, Bartoo G, Murray J, Alvord E (1995) The modelling of diffusive tumours. J Biol Syst 3:937–945CrossRef
11.
go back to reference Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28:17–31PubMedCrossRef Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28:17–31PubMedCrossRef
12.
go back to reference Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29(6):269–288PubMedCrossRef Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29(6):269–288PubMedCrossRef
13.
go back to reference Swanson K, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330PubMedCrossRef Swanson K, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–330PubMedCrossRef
14.
go back to reference Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24:1334–1346PubMedCentralPubMedCrossRef Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24:1334–1346PubMedCentralPubMedCrossRef
15.
go back to reference Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson K, Pélégrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Resonan Med 54(3):616–624CrossRef Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson K, Pélégrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Resonan Med 54(3):616–624CrossRef
16.
go back to reference Stretton E, Geremia E, Menze B, Delingette H, Ayache N (2013) Importance of patient DTI’s to accurately model glioma growth using the reaction diffusion equation. ISBI Stretton E, Geremia E, Menze B, Delingette H, Ayache N (2013) Importance of patient DTI’s to accurately model glioma growth using the reaction diffusion equation. ISBI
17.
go back to reference Mandonnet E, Capelle L, Duffau H (2006) Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neuro Oncol 78(2):179–185CrossRef Mandonnet E, Capelle L, Duffau H (2006) Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neuro Oncol 78(2):179–185CrossRef
18.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. doi:10.1016/j.mri.2012.05.001 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. doi:10.​1016/​j.​mri.​2012.​05.​001
19.
go back to reference Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346PubMedCentralPubMedCrossRef Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346PubMedCentralPubMedCrossRef
20.
go back to reference Gooya A, Biros G, Davatzikos C (2011) Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Trans Med Imaging 30(2):375–390PubMedCentralPubMedCrossRef Gooya A, Biros G, Davatzikos C (2011) Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Trans Med Imaging 30(2):375–390PubMedCentralPubMedCrossRef
21.
go back to reference Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825PubMedCentralPubMedCrossRef Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825PubMedCentralPubMedCrossRef
22.
go back to reference Konukoglu E, Clatz O, Menze B, Stieltjes B, Weber M, Mandonnet E, Delingette H, Ayache N (2009) Image guided personalization of reaction–diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29(1):77–95PubMedCrossRef Konukoglu E, Clatz O, Menze B, Stieltjes B, Weber M, Mandonnet E, Delingette H, Ayache N (2009) Image guided personalization of reaction–diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29(1):77–95PubMedCrossRef
23.
go back to reference Menze BH, Stretton E, Konukoglu E, Ayache N (2011) Image-based modeling of tumor growth in patients with glioma. Springer, Heidelberg Menze BH, Stretton E, Konukoglu E, Ayache N (2011) Image-based modeling of tumor growth in patients with glioma. Springer, Heidelberg
24.
go back to reference Murray JD (2002) Mathematical biology, vol 2. Springer, New York Murray JD (2002) Mathematical biology, vol 2. Springer, New York
25.
go back to reference Swanson KR, Rostomily RC, Alvord EC (2007) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119PubMedCentralPubMedCrossRef Swanson KR, Rostomily RC, Alvord EC (2007) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98(1):113–119PubMedCentralPubMedCrossRef
26.
go back to reference Tracqui P, Cruywagen G, Woodward D, Bartoo G, Murray J, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28(1):17–31PubMedCrossRef Tracqui P, Cruywagen G, Woodward D, Bartoo G, Murray J, Alvord EC Jr (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28(1):17–31PubMedCrossRef
27.
go back to reference Konukoglu E (2009) Modeling glioma growth and personalizing growth models in medical images. PhD thesis, University of Nice, Nice Konukoglu E (2009) Modeling glioma growth and personalizing growth models in medical images. PhD thesis, University of Nice, Nice
28.
go back to reference Ebert U, van Saarloos W (2000) Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Phys D 146(1):1–99CrossRef Ebert U, van Saarloos W (2000) Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Phys D 146(1):1–99CrossRef
29.
go back to reference Sethian James Albert (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge Sethian James Albert (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge
30.
go back to reference Keener J, Sneyd J (1998) Mathematical physiology, interdisciplinary applied mathematics. Springer, New York Keener J, Sneyd J (1998) Mathematical physiology, interdisciplinary applied mathematics. Springer, New York
31.
go back to reference Swanson K, Bridge C, Murray J, Alvord E (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10PubMedCrossRef Swanson K, Bridge C, Murray J, Alvord E (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10PubMedCrossRef
32.
go back to reference Swanson KR (1999) Mathematical modeling of the growth and control of tumors. PhD thesis, University of Washington, Seattle Swanson KR (1999) Mathematical modeling of the growth and control of tumors. PhD thesis, University of Washington, Seattle
33.
go back to reference Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–125PubMedCrossRef Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14(2):111–125PubMedCrossRef
34.
go back to reference Bohman L-E, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, Assanah M, Canoll P, Bruce JN (2010) Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery 67(5):1319PubMedCentralPubMedCrossRef Bohman L-E, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, Assanah M, Canoll P, Bruce JN (2010) Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery 67(5):1319PubMedCentralPubMedCrossRef
35.
go back to reference Lim DA, Cha S, Mayo MC, Chen M-H, Keles E, VandenBerg Scott, Berger Mitchel S (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-oncology 9(4):424–429PubMedCentralPubMedCrossRef Lim DA, Cha S, Mayo MC, Chen M-H, Keles E, VandenBerg Scott, Berger Mitchel S (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-oncology 9(4):424–429PubMedCentralPubMedCrossRef
Metadata
Title
Expert-validated CSF segmentation of MNI atlas enhances accuracy of virtual glioma growth patterns
Authors
A. Amelot
E. Stretton
H. Delingette
N. Ayache
S. Froelich
E. Mandonnet
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2015
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1645-5

Other articles of this Issue 2/2015

Journal of Neuro-Oncology 2/2015 Go to the issue