Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2013

01-03-2013 | Topic Review

MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas

Authors: Vladimir Balik, Josef Srovnal, Igor Sulla, Ondrej Kalita, Tatiana Foltanova, Miroslav Vaverka, Lumir Hrabalek, Marian Hajduch

Published in: Journal of Neuro-Oncology | Issue 1/2013

Login to get access

Abstract

Meningiomas represent one of the most common types of primary intracranial tumours. However, the specific molecular mechanisms underlying their pathogenesis remain uncertain. Loss of chromosomes 22q, 1p, and 14q have been implicated in most meningiomas. Inactivation of the NF2 gene at 22q12 has been identified as an early event in their pathogenesis, whereas abnormalities of chromosome 14 have been reported in higher-grade as well as recurrent tumours. It has long been supposed that chromosome 14q32 contains a tumour suppressor gene. However, the identity of the potential 14q32 tumour suppressor remained elusive until the Maternally Expressed Gene 3 (MEG3) was recently suggested as an ideal candidate. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA (ncRNA). In meningiomas, loss of MEG3 expression, its genomic DNA deletion and degree of promoter methylation have been found to be associated with aggressive tumour growth. These findings indicate that MEG3 may have a significant role as a novel long noncoding RNA tumour suppressor in meningiomas.
Literature
1.
go back to reference Cushing H (1922) The meningiomas (dural endotheliomas): their source and favored seats of origin. Brain 45:282–316CrossRef Cushing H (1922) The meningiomas (dural endotheliomas): their source and favored seats of origin. Brain 45:282–316CrossRef
2.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRef
3.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classifcation of tumours of the central nervous system. IARC, Lyon Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classifcation of tumours of the central nervous system. IARC, Lyon
4.
go back to reference Perry ALD, Scheithauer BW, Budka H, von Deimling A (2007) Menigiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon Perry ALD, Scheithauer BW, Budka H, von Deimling A (2007) Menigiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon
5.
go back to reference Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62:18–24PubMedCrossRef Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62:18–24PubMedCrossRef
6.
go back to reference Yamasaki F, Yoshioka H, Hama S, Sugiyama K, Arita K, Kurisu K (2000) Recurrence of meningiomas. Cancer 89:1102–1110PubMedCrossRef Yamasaki F, Yoshioka H, Hama S, Sugiyama K, Arita K, Kurisu K (2000) Recurrence of meningiomas. Cancer 89:1102–1110PubMedCrossRef
7.
go back to reference Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26:461–469PubMedCrossRef Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26:461–469PubMedCrossRef
8.
go back to reference Aghi M, Carter B, Cosgrove G, Ojemann R, Amin-Hanjani S, Martuza R, Curry WT Jr, Barker FG 2nd (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60PubMedCrossRef Aghi M, Carter B, Cosgrove G, Ojemann R, Amin-Hanjani S, Martuza R, Curry WT Jr, Barker FG 2nd (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60PubMedCrossRef
9.
go back to reference Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr, Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701PubMed Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr, Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701PubMed
10.
go back to reference Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724PubMedCrossRef Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724PubMedCrossRef
11.
go back to reference Menon AG, Rutter JL, von Sattel JP, Synder H, Murdoch C, Blumenfeld A, Martuza RL, von Deimling A, Gusella JF, Houseal TW (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 14:611–616PubMedCrossRef Menon AG, Rutter JL, von Sattel JP, Synder H, Murdoch C, Blumenfeld A, Martuza RL, von Deimling A, Gusella JF, Houseal TW (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 14:611–616PubMedCrossRef
12.
go back to reference Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636PubMed Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636PubMed
13.
go back to reference Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally Expressed Gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358PubMedCrossRef Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally Expressed Gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358PubMedCrossRef
14.
go back to reference Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5:211–220PubMedCrossRef Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5:211–220PubMedCrossRef
15.
go back to reference Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10:1711–1718PubMedCrossRef Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10:1711–1718PubMedCrossRef
16.
go back to reference Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A (1998) The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn 212:214–228PubMedCrossRef Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A (1998) The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn 212:214–228PubMedCrossRef
17.
18.
go back to reference Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88:5119–5126PubMedCrossRef Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88:5119–5126PubMedCrossRef
19.
go back to reference Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER (2005) Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms’ tumour. Br J Cancer 92:1574–1580PubMedCrossRef Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER (2005) Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms’ tumour. Br J Cancer 92:1574–1580PubMedCrossRef
20.
go back to reference Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186PubMedCrossRef Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186PubMedCrossRef
21.
go back to reference Pantoja C, de Los Rios L, Matheu A, Antequera F, Serrano M (2005) Inactivation of imprinted genes induced by cellular stress and tumorigenesis. Cancer Res 65:26–33PubMed Pantoja C, de Los Rios L, Matheu A, Antequera F, Serrano M (2005) Inactivation of imprinted genes induced by cellular stress and tumorigenesis. Cancer Res 65:26–33PubMed
22.
go back to reference Benetatos L, Dasoula A, Hatzimichael E, Georgiou I, Syrrou M, Bourantas KL (2008) Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin Lymphoma Myeloma 8:171–175PubMedCrossRef Benetatos L, Dasoula A, Hatzimichael E, Georgiou I, Syrrou M, Bourantas KL (2008) Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin Lymphoma Myeloma 8:171–175PubMedCrossRef
23.
go back to reference Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, Georgiou I, Bourantas KL (2010) CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34:148–153PubMedCrossRef Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, Georgiou I, Bourantas KL (2010) CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34:148–153PubMedCrossRef
24.
go back to reference Zhang X, Rice K, Wang Y, Chen W, Zhoní Y, Nakayama Y, Zhou Y, Klibanski A (2010) Maternally Expressed Gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151:939–947PubMedCrossRef Zhang X, Rice K, Wang Y, Chen W, Zhoní Y, Nakayama Y, Zhou Y, Klibanski A (2010) Maternally Expressed Gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151:939–947PubMedCrossRef
25.
go back to reference Hainaut P (1995) The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7:76–82PubMed Hainaut P (1995) The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7:76–82PubMed
27.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedCrossRef
28.
go back to reference Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58PubMedCrossRef Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58PubMedCrossRef
29.
go back to reference Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A (2001) Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94:218–221PubMedCrossRef Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A (2001) Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94:218–221PubMedCrossRef
30.
go back to reference Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742PubMedCrossRef Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742PubMedCrossRef
31.
go back to reference Oliner GD, Kinder KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83PubMedCrossRef Oliner GD, Kinder KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83PubMedCrossRef
32.
go back to reference Olson D, Marechal V, Momand J, Chen J, Romochi C, Levine AJ (1993) Identification and characterization of multiple mdm2 proteins and mdm2 p53 protein complexes. Oncogene 8:2353–2360PubMed Olson D, Marechal V, Momand J, Chen J, Romochi C, Levine AJ (1993) Identification and characterization of multiple mdm2 proteins and mdm2 p53 protein complexes. Oncogene 8:2353–2360PubMed
33.
go back to reference Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-MDM2 autoregulatory feedback loop. Genes Dev 7:1126–1132PubMedCrossRef Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-MDM2 autoregulatory feedback loop. Genes Dev 7:1126–1132PubMedCrossRef
34.
go back to reference Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171PubMedCrossRef Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171PubMedCrossRef
35.
go back to reference Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459PubMedCrossRef Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459PubMedCrossRef
36.
go back to reference Mendrysa SM, O’Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, Perry ME (2006) Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 20:16–21PubMedCrossRef Mendrysa SM, O’Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, Perry ME (2006) Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 20:16–21PubMedCrossRef
37.
go back to reference Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedCrossRef Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedCrossRef
38.
go back to reference Marine JC, Francoz S, Maetens M, Wahl G, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934PubMedCrossRef Marine JC, Francoz S, Maetens M, Wahl G, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934PubMedCrossRef
39.
go back to reference Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 2:912–917PubMedCrossRef Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 2:912–917PubMedCrossRef
40.
go back to reference Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2:9–15PubMedCrossRef Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2:9–15PubMedCrossRef
41.
go back to reference Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW (2003) Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 63:5703–5706PubMed Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW (2003) Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 63:5703–5706PubMed
42.
go back to reference Evans SC, Viswanathan M, Grier JD, Narayana M, El-Naggar AK, Lozano G (2001) An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 20:4041–4049PubMedCrossRef Evans SC, Viswanathan M, Grier JD, Narayana M, El-Naggar AK, Lozano G (2001) An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 20:4041–4049PubMedCrossRef
43.
go back to reference Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF (2002) The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62:1222–1230PubMed Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF (2002) The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62:1222–1230PubMed
44.
go back to reference Brown DR, Thomas CA, Deb SP (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17:2513–2525PubMedCrossRef Brown DR, Thomas CA, Deb SP (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17:2513–2525PubMedCrossRef
45.
go back to reference Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC (2005) Wild-Type p53 Overexpression and Its Correlation With MDM2 and p14ARF Alterations: an Alternative Pathway to Non–Small-Cell Lung Cancer. J Clin Oncol 23:154–164PubMedCrossRef Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC (2005) Wild-Type p53 Overexpression and Its Correlation With MDM2 and p14ARF Alterations: an Alternative Pathway to Non–Small-Cell Lung Cancer. J Clin Oncol 23:154–164PubMedCrossRef
46.
go back to reference Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8PubMed Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8PubMed
47.
go back to reference Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240PubMedCrossRef Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240PubMedCrossRef
48.
go back to reference Li P-X, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ (2000) Placental transforming growth factor-b is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275:20127–20135PubMedCrossRef Li P-X, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ (2000) Placental transforming growth factor-b is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275:20127–20135PubMedCrossRef
49.
go back to reference Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou MF, Fairlie DW, Breit SN, Paralkar VM, de Tribolet N, Van Meir EG, Hegi ME (2002) Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastomas cells independently of p53 and HIF-1. Oncogene 21:4212–4219PubMedCrossRef Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou MF, Fairlie DW, Breit SN, Paralkar VM, de Tribolet N, Van Meir EG, Hegi ME (2002) Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastomas cells independently of p53 and HIF-1. Oncogene 21:4212–4219PubMedCrossRef
50.
go back to reference Xing EP, Yang G-Y, Wang L-D, Shi ST, Yang CS (1999) Loss of heterozygosity of the Rb gene correlates with pRb protein expression and associates with p53 alteration in human esophageal cancer. Clin Cancer Res 5:1231–1240PubMed Xing EP, Yang G-Y, Wang L-D, Shi ST, Yang CS (1999) Loss of heterozygosity of the Rb gene correlates with pRb protein expression and associates with p53 alteration in human esophageal cancer. Clin Cancer Res 5:1231–1240PubMed
51.
52.
54.
go back to reference Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification of retinoblastoma protein by at least two distinct cyclin-Cdk complexes. Mol Cell Biol 18:735–761 Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification of retinoblastoma protein by at least two distinct cyclin-Cdk complexes. Mol Cell Biol 18:735–761
56.
go back to reference Mathivanan J, Rohini K, Gope ML, Anandh B, Gope R (2007) Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. Mol Cell Biochem 302:67–77PubMedCrossRef Mathivanan J, Rohini K, Gope ML, Anandh B, Gope R (2007) Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. Mol Cell Biochem 302:67–77PubMedCrossRef
57.
go back to reference Ma D, Zhou P, Harbour JW (2003) Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J Biol Chem 278:19358–19366PubMedCrossRef Ma D, Zhou P, Harbour JW (2003) Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J Biol Chem 278:19358–19366PubMedCrossRef
58.
go back to reference Rassidakis GZ, Lai R, Herling M, Cromwell C, Schmitt-Graeff A, Medeiros LJ (2004) Retinoblastoma protein is frequently absent or phosphorylated in anaplastic large-cell lymphoma. Am J Pathol 164:2259–2267PubMedCrossRef Rassidakis GZ, Lai R, Herling M, Cromwell C, Schmitt-Graeff A, Medeiros LJ (2004) Retinoblastoma protein is frequently absent or phosphorylated in anaplastic large-cell lymphoma. Am J Pathol 164:2259–2267PubMedCrossRef
59.
go back to reference Al-Khalaf HH, Lach B, Allam A, Hassounah M, Al-Khani A, Elkum N, Alrokayan SA, Aboussekhra A (2008) Expression of survivin and p16INK4a/Cdk6/pRB proteins and induction of apoptosis in response to radiation and cisplatin in meningioma cells. Brain Res 1188:25–34PubMedCrossRef Al-Khalaf HH, Lach B, Allam A, Hassounah M, Al-Khani A, Elkum N, Alrokayan SA, Aboussekhra A (2008) Expression of survivin and p16INK4a/Cdk6/pRB proteins and induction of apoptosis in response to radiation and cisplatin in meningioma cells. Brain Res 1188:25–34PubMedCrossRef
60.
go back to reference Simon M, Park TW, Koster G, Mahlberg R, Hackenbroch M, Bostrom J, Loning T, Schramm J (2001) Alterations of INK4a(p16–p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158PubMedCrossRef Simon M, Park TW, Koster G, Mahlberg R, Hackenbroch M, Bostrom J, Loning T, Schramm J (2001) Alterations of INK4a(p16–p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158PubMedCrossRef
61.
go back to reference Zhang X, Zhou Y, Klibanski A (2010) Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 326:40–47PubMedCrossRef Zhang X, Zhou Y, Klibanski A (2010) Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 326:40–47PubMedCrossRef
62.
go back to reference Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAPkinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266PubMedCrossRef Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAPkinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266PubMedCrossRef
63.
go back to reference Liu X, Ostrom RS, Insel PA (2004) cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol 286:C1089–C1099PubMedCrossRef Liu X, Ostrom RS, Insel PA (2004) cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol 286:C1089–C1099PubMedCrossRef
64.
go back to reference Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A (2006) Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int J Biochem Cell Biol 38:1808–1820PubMedCrossRef Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A (2006) Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int J Biochem Cell Biol 38:1808–1820PubMedCrossRef
65.
go back to reference Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129:773–779PubMedCrossRef Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129:773–779PubMedCrossRef
66.
go back to reference Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151:2443–2452PubMedCrossRef Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151:2443–2452PubMedCrossRef
67.
go back to reference Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP (2002) Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet 11:1527–1538PubMedCrossRef Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP (2002) Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet 11:1527–1538PubMedCrossRef
68.
go back to reference Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M (2001) Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: dLK1, DAT, GTL2, PEG11, anti PEG11 and MEG8. Genome Res 11:850–862PubMedCrossRef Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M (2001) Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: dLK1, DAT, GTL2, PEG11, anti PEG11 and MEG8. Genome Res 11:850–862PubMedCrossRef
69.
go back to reference Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, Ferguson-Smith AC (2002) Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet 11:77–86PubMedCrossRef Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, Ferguson-Smith AC (2002) Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet 11:77–86PubMedCrossRef
70.
go back to reference Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35:97–102PubMedCrossRef Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35:97–102PubMedCrossRef
71.
go back to reference Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, Kaneko T, Mori M, Kirito K, Toshima M, Nakamura Y, Saito K, Kano Y, Furusawa S, Ozawa K, Mano H (2001) Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 98:422–427PubMedCrossRef Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, Kaneko T, Mori M, Kirito K, Toshima M, Nakamura Y, Saito K, Kano Y, Furusawa S, Ozawa K, Mano H (2001) Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 98:422–427PubMedCrossRef
72.
go back to reference Tsibris JC, Segars J, Coppola D, Mane S, Wilbanks GD, O’Brien WF, Spellacy WN (2002) Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril 78:114–121PubMedCrossRef Tsibris JC, Segars J, Coppola D, Mane S, Wilbanks GD, O’Brien WF, Spellacy WN (2002) Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril 78:114–121PubMedCrossRef
73.
go back to reference Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Bützow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105:7004–7009PubMedCrossRef Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Bützow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105:7004–7009PubMedCrossRef
74.
go back to reference Wang P, Ren Z, Sun P (2012) Overexpression of the Long Non-coding RNA MEG3 Impairs In vitro Glioma Cell Proliferation. J Cell Biochem 113:1868–1874PubMedCrossRef Wang P, Ren Z, Sun P (2012) Overexpression of the Long Non-coding RNA MEG3 Impairs In vitro Glioma Cell Proliferation. J Cell Biochem 113:1868–1874PubMedCrossRef
75.
go back to reference Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125PubMedCrossRef Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125PubMedCrossRef
76.
go back to reference Aypar U, Morgan WF, Baulch JE (2011) Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res 707:24–33PubMedCrossRef Aypar U, Morgan WF, Baulch JE (2011) Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res 707:24–33PubMedCrossRef
Metadata
Title
MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas
Authors
Vladimir Balik
Josef Srovnal
Igor Sulla
Ondrej Kalita
Tatiana Foltanova
Miroslav Vaverka
Lumir Hrabalek
Marian Hajduch
Publication date
01-03-2013
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2013
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-012-1038-6

Other articles of this Issue 1/2013

Journal of Neuro-Oncology 1/2013 Go to the issue