Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2011

01-09-2011 | Topic Review

Tissue concentration of systemically administered antineoplastic agents in human brain tumors

Authors: Marshall W. Pitz, Arati Desai, Stuart A. Grossman, Jaishri O. Blakeley

Published in: Journal of Neuro-Oncology | Issue 3/2011

Login to get access

Abstract

The blood–brain-barrier (BBB) limits the penetration of many systemic antineoplastic therapies. Consequently, many agents may be used in clinical studies and clinical practice though they may not achieve therapeutic levels within the tumor. We sought to compile the currently available human data on antineoplastic drug concentrations in brain and tumor tissue according to BBB status. A review of the literature was conducted for human studies providing concentrations of antineoplastic agents in blood and metastatic brain tumors or high-grade gliomas. Studies were considered optimal if they reported simultaneous tissue and blood concentration, multiple sampling times and locations, MRI localization, BBB status at sampling site, tumor histology, and individual subject data. Twenty-Four studies of 19 compounds were included. These examined 18 agents in contrast-enhancing regions of high-grade gliomas, with optimal data for 2. For metastatic brain tumors, adequate data was found for 9 agents. Considerable heterogeneity was found in the measurement value, tumor type, measurement timing, and sampling location within and among studies, limiting the applicability of the results. Tissue to blood ratios ranged from 0.054 for carboplatin to 34 for mitoxantrone in high-grade gliomas, and were lowest for temozolomide (0.118) and etoposide (0.116), and highest for mitoxantrone (32.02) in metastatic tumors. The available data examining the concentration of antineoplastic agents in brain and tumor tissue is sparse and limited by considerable heterogeneity. More studies with careful quantification of antineoplastic agents in brain and tumor tissue is required for the rational development of therapeutic regimens.
Literature
1.
go back to reference Motl S, Zhuang Y, Waters CM, Stewart CF (2006) Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 45:871PubMedCrossRef Motl S, Zhuang Y, Waters CM, Stewart CF (2006) Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 45:871PubMedCrossRef
2.
go back to reference Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood-brain barrier in drug discovery, development. Nat Rev Drug Discov 6:650PubMedCrossRef Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood-brain barrier in drug discovery, development. Nat Rev Drug Discov 6:650PubMedCrossRef
3.
go back to reference Abbott N (2004) Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro, in silico models. Drug Discov Today Technol 1:407CrossRef Abbott N (2004) Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro, in silico models. Drug Discov Today Technol 1:407CrossRef
4.
go back to reference Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295PubMedCrossRef Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295PubMedCrossRef
5.
go back to reference Collins J, Dedrick R (1983) Distributed model for drug deliver to CSF and brain tissue. Am J Physiol Regul Integr Comp Physiol 245:R303 Collins J, Dedrick R (1983) Distributed model for drug deliver to CSF and brain tissue. Am J Physiol Regul Integr Comp Physiol 245:R303
6.
go back to reference de Lange E, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood, brain. Clin Pharmacokinet 41:691PubMedCrossRef de Lange E, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood, brain. Clin Pharmacokinet 41:691PubMedCrossRef
7.
go back to reference Pardridge W (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRX J Am Soc Exp NeuroTher 2:3 Pardridge W (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRX J Am Soc Exp NeuroTher 2:3
8.
go back to reference Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196PubMedCrossRef Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196PubMedCrossRef
9.
go back to reference Nies A (2007) The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 254:11PubMedCrossRef Nies A (2007) The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 254:11PubMedCrossRef
10.
go back to reference Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression, function in the central nervous system. Pharmacol Rev 58:140PubMedCrossRef Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression, function in the central nervous system. Pharmacol Rev 58:140PubMedCrossRef
11.
go back to reference Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54:291PubMedCrossRef Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54:291PubMedCrossRef
12.
go back to reference Winkler D, Burden F (2004) Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model 22:499PubMedCrossRef Winkler D, Burden F (2004) Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model 22:499PubMedCrossRef
13.
go back to reference Basak S, Gute B, Drewes L (1996) Predicting blood-brain transport of drugs: a computational approach. Pharm Res 13 Basak S, Gute B, Drewes L (1996) Predicting blood-brain transport of drugs: a computational approach. Pharm Res 13
14.
15.
go back to reference Sarin H (2009) Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med 7 Sarin H (2009) Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med 7
16.
go back to reference Groothuis D, Vick N (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5 Groothuis D, Vick N (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5
17.
go back to reference Essig M, Weber M, Von Tengg-Kobligk H, et al (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17 Essig M, Weber M, Von Tengg-Kobligk H, et al (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17
18.
go back to reference Blakeley JO, Olson J, Grossman SA et al (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91:51PubMedCrossRef Blakeley JO, Olson J, Grossman SA et al (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91:51PubMedCrossRef
19.
go back to reference Ma J, Pulfer S, Li S et al (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61:5491PubMed Ma J, Pulfer S, Li S et al (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61:5491PubMed
20.
go back to reference Claes A, Wesseling P, Jeuken J et al (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7:71PubMedCrossRef Claes A, Wesseling P, Jeuken J et al (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7:71PubMedCrossRef
21.
go back to reference Bickel U (2005) How to measure drug transport across the blood-brain-barrier. NeuroRX J Am Soc Exp NeuroTher 2:15 Bickel U (2005) How to measure drug transport across the blood-brain-barrier. NeuroRX J Am Soc Exp NeuroTher 2:15
22.
go back to reference Sarin H, Kanevsky A, Wu H et al (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80PubMedCrossRef Sarin H, Kanevsky A, Wu H et al (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80PubMedCrossRef
23.
go back to reference Alavijeh M, Palmer A (2009) Measurement of the pharmacokinetics, pharmacodynamics of neuroactive compounds. Neurobiol Dis 37:38PubMedCrossRef Alavijeh M, Palmer A (2009) Measurement of the pharmacokinetics, pharmacodynamics of neuroactive compounds. Neurobiol Dis 37:38PubMedCrossRef
24.
26.
go back to reference Portnow J, Badie B, Chen M et al (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092PubMedCrossRef Portnow J, Badie B, Chen M et al (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092PubMedCrossRef
27.
go back to reference Shinohara C, Matsumoto K, Kuriyama M et al (1994) Clinical pharmacokinetics of carboplatin, MCNU. Gan to kagaku ryoho. Cancer Chemother 21:1163 Shinohara C, Matsumoto K, Kuriyama M et al (1994) Clinical pharmacokinetics of carboplatin, MCNU. Gan to kagaku ryoho. Cancer Chemother 21:1163
28.
go back to reference Whittle IR, Malcolm G, Jodrell DI, Reid M (1999) Platinum distribution in malignant glioma following intraoperative intravenous infusion of carboplatin. Br J Neurosurg 13:132PubMedCrossRef Whittle IR, Malcolm G, Jodrell DI, Reid M (1999) Platinum distribution in malignant glioma following intraoperative intravenous infusion of carboplatin. Br J Neurosurg 13:132PubMedCrossRef
29.
go back to reference Gilbert M (2007) Tumor tissue delivery of celingitide after intravenous administration to patients with recurrent glioblastoma (GBM): preliminary data from NABTC protocol 03-02. Neuro-oncol 9:525 Gilbert M (2007) Tumor tissue delivery of celingitide after intravenous administration to patients with recurrent glioblastoma (GBM): preliminary data from NABTC protocol 03-02. Neuro-oncol 9:525
30.
go back to reference Nakagawa H, Fujita T, Izumoto S et al (1993) Cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central nervous system after intravenous, intracarotid infusion. J Neurooncol 16:61PubMedCrossRef Nakagawa H, Fujita T, Izumoto S et al (1993) Cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central nervous system after intravenous, intracarotid infusion. J Neurooncol 16:61PubMedCrossRef
31.
go back to reference Albrecht KW, Hamer PCdW, Leenstra S, et al (2001) High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin. Journal of Neuro-Oncology 53 Albrecht KW, Hamer PCdW, Leenstra S, et al (2001) High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin. Journal of Neuro-Oncology 53
32.
go back to reference Zucchetti M, Boiardi A, Silvani A et al (1999) Distribution of daunorubicin, daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 44:173PubMedCrossRef Zucchetti M, Boiardi A, Silvani A et al (1999) Distribution of daunorubicin, daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 44:173PubMedCrossRef
33.
go back to reference Raizer JJ, Abrey L, Lassman AB et al (2010) A phase II trial of erlotinib in patients with recurrent malignant gliomas, nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12:95PubMed Raizer JJ, Abrey L, Lassman AB et al (2010) A phase II trial of erlotinib in patients with recurrent malignant gliomas, nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12:95PubMed
34.
go back to reference Bergenheim AT, Gunnarsson PO, Edman K et al (1993) Uptake, retention of estramustine, the presence of estratmustine binding protein in malignant brain tumours in humans. Br J Cancer 67:358PubMedCrossRef Bergenheim AT, Gunnarsson PO, Edman K et al (1993) Uptake, retention of estramustine, the presence of estratmustine binding protein in malignant brain tumours in humans. Br J Cancer 67:358PubMedCrossRef
35.
go back to reference Zucchetti M, Rossi C, Knerich R et al (1991) Concentrations of VP16, VM26 in human brain tumors. Ann Oncol 2:63PubMed Zucchetti M, Rossi C, Knerich R et al (1991) Concentrations of VP16, VM26 in human brain tumors. Ann Oncol 2:63PubMed
36.
go back to reference Kiya K, Uozumi T, Ogasawara H et al (1992) Penetration of etoposide into human malignant brain tumors after intravenous, oral administration. Cancer Chemother Pharmacol 29:339PubMedCrossRef Kiya K, Uozumi T, Ogasawara H et al (1992) Penetration of etoposide into human malignant brain tumors after intravenous, oral administration. Cancer Chemother Pharmacol 29:339PubMedCrossRef
37.
go back to reference Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of VP-16 (etoposide) into human intracerebral, extracerebral tumors. J Neurooncol 2:133PubMed Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of VP-16 (etoposide) into human intracerebral, extracerebral tumors. J Neurooncol 2:133PubMed
38.
39.
go back to reference Boogerd W, Tjahja IS, Sandt MMvd, Beijnen JH (1999) Penetration of idarubicin into malignant brain tumor tissue. J Neurooncol 44:65PubMedCrossRef Boogerd W, Tjahja IS, Sandt MMvd, Beijnen JH (1999) Penetration of idarubicin into malignant brain tumor tissue. J Neurooncol 44:65PubMedCrossRef
40.
go back to reference Holdoff M, Supko J, Gallia GL et al (2009) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241CrossRef Holdoff M, Supko J, Gallia GL et al (2009) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241CrossRef
41.
go back to reference Kuhn JG (2008) Tumor sequestration of lapatinib. Neuro-oncol 10:783 Kuhn JG (2008) Tumor sequestration of lapatinib. Neuro-oncol 10:783
42.
go back to reference Green RM, Stewart DJ, Hugenholtz H et al (1988) Human central nervous system, plasma pharmacology of mitoxantrone. J Neurooncol 6:75PubMedCrossRef Green RM, Stewart DJ, Hugenholtz H et al (1988) Human central nervous system, plasma pharmacology of mitoxantrone. J Neurooncol 6:75PubMedCrossRef
43.
go back to reference Heimans JJ, Vermorken JB, Wolbers JB et al (1994) Paclitaxel (TAXOL) concentrations in brain tumor tissue. Ann Oncol 5:951PubMed Heimans JJ, Vermorken JB, Wolbers JB et al (1994) Paclitaxel (TAXOL) concentrations in brain tumor tissue. Ann Oncol 5:951PubMed
44.
go back to reference Fine RL, Chen J, Balmaceda C et al (2006) Randomized study of paclitaxel, tamoxifen deposition into human brain tumors: implications for the treatment of metastatic brain tumors. Clin Cancer Res 12:5770PubMedCrossRef Fine RL, Chen J, Balmaceda C et al (2006) Randomized study of paclitaxel, tamoxifen deposition into human brain tumors: implications for the treatment of metastatic brain tumors. Clin Cancer Res 12:5770PubMedCrossRef
45.
go back to reference Whittle IR, MacPherson JS, Miller JD, Smyth JF (1990) The disposition of TCNU (tauromustine) in human malignant glioma: phamacokinetic studies, clinical implications. J Neurosurg 72:721PubMedCrossRef Whittle IR, MacPherson JS, Miller JD, Smyth JF (1990) The disposition of TCNU (tauromustine) in human malignant glioma: phamacokinetic studies, clinical implications. J Neurosurg 72:721PubMedCrossRef
46.
go back to reference Kuhn JG, Chang SM, Wen PY et al (2007) Pharmocokinetic and tumor distribution characteristics of temsirolimus. Clin Cancer Res 13:7401PubMedCrossRef Kuhn JG, Chang SM, Wen PY et al (2007) Pharmocokinetic and tumor distribution characteristics of temsirolimus. Clin Cancer Res 13:7401PubMedCrossRef
47.
go back to reference van Tellingen O, Boogerd W, Nooijen WJ, Beijnen JH (1997) The vascular compartment hampers accurate determination of teniposide penetration into brain tumor tissue. Cancer Chemother Pharmacol 40:330PubMedCrossRef van Tellingen O, Boogerd W, Nooijen WJ, Beijnen JH (1997) The vascular compartment hampers accurate determination of teniposide penetration into brain tumor tissue. Cancer Chemother Pharmacol 40:330PubMedCrossRef
48.
go back to reference Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of teniposide (VM-26) into human intracerebral tumors. J Neurooncol 2:315PubMed Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of teniposide (VM-26) into human intracerebral tumors. J Neurooncol 2:315PubMed
49.
go back to reference Stupp R, Mason WP, Bent MJ et al (2005) Radiotherapy plus concomitant, adjuvant temozolomide for glioblastoma. N Engl J Med 352:987PubMedCrossRef Stupp R, Mason WP, Bent MJ et al (2005) Radiotherapy plus concomitant, adjuvant temozolomide for glioblastoma. N Engl J Med 352:987PubMedCrossRef
50.
go back to reference Franceschi E, Cavallo G, Lonardi S et al (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047PubMedCrossRef Franceschi E, Cavallo G, Lonardi S et al (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047PubMedCrossRef
51.
go back to reference Vulpen Mv, Kal HB, Taphoorn MJ, Sharouni SYE (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 9:683PubMed Vulpen Mv, Kal HB, Taphoorn MJ, Sharouni SYE (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 9:683PubMed
52.
go back to reference Martin I (2004) Prediction of blood-brain barrier penetration: are we missing the point? Drug Discov Today 9:161PubMedCrossRef Martin I (2004) Prediction of blood-brain barrier penetration: are we missing the point? Drug Discov Today 9:161PubMedCrossRef
Metadata
Title
Tissue concentration of systemically administered antineoplastic agents in human brain tumors
Authors
Marshall W. Pitz
Arati Desai
Stuart A. Grossman
Jaishri O. Blakeley
Publication date
01-09-2011
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2011
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-011-0564-y

Other articles of this Issue 3/2011

Journal of Neuro-Oncology 3/2011 Go to the issue