Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2011

01-08-2011 | Laboratory Investigation - Human/Animal Tissue

Nanoshell-mediated photothermal therapy improves survival in a murine glioma model

Authors: Emily S. Day, Patrick A. Thompson, Linna Zhang, Nastassja A. Lewinski, Nabil Ahmed, Rebekah A. Drezek, Susan M. Blaney, Jennifer L. West

Published in: Journal of Neuro-Oncology | Issue 1/2011

Login to get access

Abstract

We are developing a novel treatment for high-grade gliomas using near infrared-absorbing silica–gold nanoshells that are thermally activated upon exposure to a near infrared laser, thereby irreversibly damaging cancerous cells. The goal of this work was to determine the efficacy of nanoshell-mediated photothermal therapy in vivo in murine xenograft models. Tumors were induced in male IcrTac:ICR-PrkdcSCID mice by subcutaneous implantation of Firefly Luciferase-labeled U373 human glioma cells and biodistribution and survival studies were performed. To evaluate nanoparticle biodistribution, nanoshells were delivered intravenously to tumor-bearing mice and after 6, 24, or 48 h the tumor, liver, spleen, brain, muscle, and blood were assessed for gold content by inductively coupled plasma-mass spectrometry (ICP-MS) and histology. Nanoshell concentrations in the tumor increased for the first 24 h and stabilized thereafter. Treatment efficacy was evaluated by delivering saline or nanoshells intravenously and externally irradiating tumors with a near infrared laser 24 h post-injection. Success of treatment was assessed by monitoring tumor size, tumor luminescence, and survival time of the mice following laser irradiation. There was a significant improvement in survival for the nanoshell treatment group versus the control (P < 0.02) and 57% of the mice in the nanoshell treatment group remained tumor free at the end of the 90-day study period. By comparison, none of the mice in the control group survived beyond 24 days and mean survival was only 13.3 days. The results of these studies suggest that nanoshell-mediated photothermal therapy represents a promising novel treatment strategy for malignant glioma.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef
4.
go back to reference Daumas-Duport C, Scheithauer B, Ofallon J, Kelly P (1988) Grading of astrocytomas-a simple and reproducible method. Cancer 62(10):2152–2165PubMedCrossRef Daumas-Duport C, Scheithauer B, Ofallon J, Kelly P (1988) Grading of astrocytomas-a simple and reproducible method. Cancer 62(10):2152–2165PubMedCrossRef
5.
go back to reference Butler JM, Rapp SR, Shaw EG (2006) Managing the cognitive effects of brain tumor radiation therapy. Curr Treat Options Oncol 7(6):517–523PubMedCrossRef Butler JM, Rapp SR, Shaw EG (2006) Managing the cognitive effects of brain tumor radiation therapy. Curr Treat Options Oncol 7(6):517–523PubMedCrossRef
6.
go back to reference Ricard D, Taillia H, Renard JL (2009) Brain damage from anticancer treatments in adults. Curr Opin Oncol 21(6):559–565PubMedCrossRef Ricard D, Taillia H, Renard JL (2009) Brain damage from anticancer treatments in adults. Curr Opin Oncol 21(6):559–565PubMedCrossRef
7.
go back to reference Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497PubMedCrossRef Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497PubMedCrossRef
8.
go back to reference Day ES, Morton JG, West JL (2009) Nanoparticles for thermal cancer therapy. J Biomech Eng-Trans ASME 131(7):074001 (5 pp) Day ES, Morton JG, West JL (2009) Nanoparticles for thermal cancer therapy. J Biomech Eng-Trans ASME 131(7):074001 (5 pp)
9.
go back to reference Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60PubMedCrossRef Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60PubMedCrossRef
10.
go back to reference Wust P, Gneveckow U, Johannsen M, Bohmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A (2006) Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures. Int J Hyperth 22(8):673–685CrossRef Wust P, Gneveckow U, Johannsen M, Bohmer D, Henkel T, Kahmann F, Sehouli J, Felix R, Ricke J, Jordan A (2006) Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures. Int J Hyperth 22(8):673–685CrossRef
11.
go back to reference Jordan A, Scholz R, Maier-Hauff K, van Landeghem FKH, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78(1):7–14PubMedCrossRef Jordan A, Scholz R, Maier-Hauff K, van Landeghem FKH, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78(1):7–14PubMedCrossRef
12.
go back to reference Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66PubMedCrossRef Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66PubMedCrossRef
13.
go back to reference Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713PubMedCrossRef Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713PubMedCrossRef
14.
go back to reference O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef
15.
go back to reference Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934PubMedCrossRef Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934PubMedCrossRef
16.
go back to reference Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86(2):165–172PubMedCrossRef Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86(2):165–172PubMedCrossRef
17.
go back to reference Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554PubMedCrossRef Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554PubMedCrossRef
18.
go back to reference Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRef Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRef
19.
go back to reference Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle-size variation. Langmuir 9(9):2301–2309CrossRef Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle-size variation. Langmuir 9(9):2301–2309CrossRef
20.
go back to reference Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS, Bhattacharjee MB, Gilbertson RJ, Shine HD, Weiss HL, Rooney CM, Heslop HE, Gottschalk S (2007) Regression of experimental medulloblastoma following transfer of her2-specific t cells. Cancer Res 67(12):5957–5964PubMedCrossRef Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS, Bhattacharjee MB, Gilbertson RJ, Shine HD, Weiss HL, Rooney CM, Heslop HE, Gottschalk S (2007) Regression of experimental medulloblastoma following transfer of her2-specific t cells. Cancer Res 67(12):5957–5964PubMedCrossRef
21.
go back to reference Loo C, Hirsch L, Lee MH, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014PubMedCrossRef Loo C, Hirsch L, Lee MH, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30(9):1012–1014PubMedCrossRef
22.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711PubMedCrossRef Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711PubMedCrossRef
23.
go back to reference Gobin AM, Moon JJ, West JL (2008) Ephrin AI-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomed 3(3):351–358 Gobin AM, Moon JJ, West JL (2008) Ephrin AI-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomed 3(3):351–358
24.
go back to reference De Jong WH, Hagens WI, Krystek P, Burger MC, Sips A, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919PubMedCrossRef De Jong WH, Hagens WI, Krystek P, Burger MC, Sips A, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919PubMedCrossRef
25.
go back to reference Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66(2):274–280PubMedCrossRef Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66(2):274–280PubMedCrossRef
26.
go back to reference Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) Peg-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347PubMedCrossRef Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) Peg-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347PubMedCrossRef
27.
go back to reference Xie H, Gill-Sharp KL, O’Neal DP (2007) Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering. Nanomedicine 3(1):89–94PubMed Xie H, Gill-Sharp KL, O’Neal DP (2007) Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering. Nanomedicine 3(1):89–94PubMed
28.
go back to reference James WD, Hirsch LR, West JL, O’Neal PD, Payne JD (2007) Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 271(2):455–459CrossRef James WD, Hirsch LR, West JL, O’Neal PD, Payne JD (2007) Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 271(2):455–459CrossRef
30.
go back to reference Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1(2):149–154CrossRef Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1(2):149–154CrossRef
31.
go back to reference Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667PubMedCrossRef Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667PubMedCrossRef
32.
go back to reference ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29-[updated 2010 Feb 2; cited 2010 Sept 9]. Identifier NCT00848042, pilot study of AuroLase™ therapy in refractory and/or recurrent tumors of the head and neck, 4 pp. http://clinicaltrials.gov/ct2/show/NCT00848042 ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29-[updated 2010 Feb 2; cited 2010 Sept 9]. Identifier NCT00848042, pilot study of AuroLase™ therapy in refractory and/or recurrent tumors of the head and neck, 4 pp. http://​clinicaltrials.​gov/​ct2/​show/​NCT00848042
Metadata
Title
Nanoshell-mediated photothermal therapy improves survival in a murine glioma model
Authors
Emily S. Day
Patrick A. Thompson
Linna Zhang
Nastassja A. Lewinski
Nabil Ahmed
Rebekah A. Drezek
Susan M. Blaney
Jennifer L. West
Publication date
01-08-2011
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2011
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0470-8

Other articles of this Issue 1/2011

Journal of Neuro-Oncology 1/2011 Go to the issue

Letter to the Editor

Brain tumors and driving