Skip to main content
Top
Published in: Metabolic Brain Disease 5/2020

01-06-2020 | Laminectomy | Original Article

Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation

Authors: Ibrahim Mohammed, Sahar Ijaz, Tahmineh Mokhtari, Morteza Gholaminejhad, Marzieh Mahdavipour, Behnamedin Jameie, Mohammad Akbari, Gholamreza Hassanzadeh

Published in: Metabolic Brain Disease | Issue 5/2020

Login to get access

Abstract

Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Literature
go back to reference Aligholi H et al (2014) A new and safe method for stereotactically harvesting neural stem/progenitor cells from the adult rat subventricular zone. J Neurosci Methods 225:81–89PubMed Aligholi H et al (2014) A new and safe method for stereotactically harvesting neural stem/progenitor cells from the adult rat subventricular zone. J Neurosci Methods 225:81–89PubMed
go back to reference Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758PubMed Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758PubMed
go back to reference Arias-Carrión O, Yuan T-F (2009) Autologous neural stem cell transplantation: a new treatment option for Parkinson’s disease? Med Hypotheses 73:757–759PubMed Arias-Carrión O, Yuan T-F (2009) Autologous neural stem cell transplantation: a new treatment option for Parkinson’s disease? Med Hypotheses 73:757–759PubMed
go back to reference Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp: JoVE 45:2393 Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp: JoVE 45:2393
go back to reference Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentral Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentral
go back to reference Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 1:330–337PubMed Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 1:330–337PubMed
go back to reference Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21PubMed Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21PubMed
go back to reference Bazrafkan M, Nikmehr B, Shahverdi A, Hosseini SR, Hassani F, Poorhassan M, Mokhtari T, Abolhassani F, Choobineh H, Beyer C, Hassanzadeh G (2018) Lipid peroxidation and its role in the expression of NLRP1a and NLRP3 genes in testicular tissue of male rats: a model of spinal cord injury. Iran Biomed J 22:151–159PubMedPubMedCentral Bazrafkan M, Nikmehr B, Shahverdi A, Hosseini SR, Hassani F, Poorhassan M, Mokhtari T, Abolhassani F, Choobineh H, Beyer C, Hassanzadeh G (2018) Lipid peroxidation and its role in the expression of NLRP1a and NLRP3 genes in testicular tissue of male rats: a model of spinal cord injury. Iran Biomed J 22:151–159PubMedPubMedCentral
go back to reference Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686PubMedPubMedCentral Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686PubMedPubMedCentral
go back to reference Cao Q-l, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58PubMed Cao Q-l, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58PubMed
go back to reference Caruso Bavisotto C et al (2019) Extracellular vesicle-mediated cell–cell communication in the nervous system: focus on neurological diseases. Int J Mol Sci 20:434PubMedCentral Caruso Bavisotto C et al (2019) Extracellular vesicle-mediated cell–cell communication in the nervous system: focus on neurological diseases. Int J Mol Sci 20:434PubMedCentral
go back to reference Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9:509–529PubMedPubMedCentral Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9:509–529PubMedPubMedCentral
go back to reference Chen H, Ji H, Zhang M, Liu Z, Lao L, Deng C, Chen J, Zhong G (2017) An agonist of the protective factor SIRT1 improves functional recovery and promotes neuronal survival by attenuating inflammation after spinal cord injury. J Neurosci 37:2916–2930PubMedPubMedCentral Chen H, Ji H, Zhang M, Liu Z, Lao L, Deng C, Chen J, Zhong G (2017) An agonist of the protective factor SIRT1 improves functional recovery and promotes neuronal survival by attenuating inflammation after spinal cord injury. J Neurosci 37:2916–2930PubMedPubMedCentral
go back to reference Cheng P, Kuang F, Zhang H, Ju G, Wang J (2014) Beneficial effects of thymosin β4 on spinal cord injury in the rat. Neuropharmacology 85:408–416PubMed Cheng P, Kuang F, Zhang H, Ju G, Wang J (2014) Beneficial effects of thymosin β4 on spinal cord injury in the rat. Neuropharmacology 85:408–416PubMed
go back to reference Choobineh H, Gilani MAS, Pasalar P, Jahanzad I, Ghorbani R, Hassanzadeh G (2016) The effects of testosterone on oxidative stress markers in mice with spinal cord injuries. Int J Fertil Steril 10:87–93PubMedPubMedCentral Choobineh H, Gilani MAS, Pasalar P, Jahanzad I, Ghorbani R, Hassanzadeh G (2016) The effects of testosterone on oxidative stress markers in mice with spinal cord injuries. Int J Fertil Steril 10:87–93PubMedPubMedCentral
go back to reference de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28:3404–3414PubMedPubMedCentral de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28:3404–3414PubMedPubMedCentral
go back to reference de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261PubMedPubMedCentral de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261PubMedPubMedCentral
go back to reference de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, de Koninck Y, Keane RW, Lacroix S (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066PubMedPubMedCentral de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, de Koninck Y, Keane RW, Lacroix S (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066PubMedPubMedCentral
go back to reference Doeppner TR et al (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4:1131–1143PubMedPubMedCentral Doeppner TR et al (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4:1131–1143PubMedPubMedCentral
go back to reference Farahabadi A, Akbari M, Amini Pishva A, Zendedel A, Arabkheradmand A, Beyer C, Dashti N, Hassanzadeh G (2016) Effect of progesterone therapy on TNF-α and iNOS gene expression in spinal cord injury model. Acta Med Iran 54:345–351PubMed Farahabadi A, Akbari M, Amini Pishva A, Zendedel A, Arabkheradmand A, Beyer C, Dashti N, Hassanzadeh G (2016) Effect of progesterone therapy on TNF-α and iNOS gene expression in spinal cord injury model. Acta Med Iran 54:345–351PubMed
go back to reference Fischer I (2000) Candidate cells for transplantation into the injured CNS. Prog Brain Res 128:253–257PubMed Fischer I (2000) Candidate cells for transplantation into the injured CNS. Prog Brain Res 128:253–257PubMed
go back to reference Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247PubMedPubMedCentral Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247PubMedPubMedCentral
go back to reference Ghaffari N et al (2018) Antioxidative and anti-inflammatory effects of Cichorium intybus L. seed extract in ischemia/reperfusion injury model of rat spinal cord. J Contemp Med Sci 4:2415 Ghaffari N et al (2018) Antioxidative and anti-inflammatory effects of Cichorium intybus L. seed extract in ischemia/reperfusion injury model of rat spinal cord. J Contemp Med Sci 4:2415
go back to reference György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688PubMedPubMedCentral György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688PubMedPubMedCentral
go back to reference Han D, Wu C, Xiong Q, Zhou L, Tian Y (2015) Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury. Cell Biochem Biophys 71:1341–1347PubMed Han D, Wu C, Xiong Q, Zhou L, Tian Y (2015) Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury. Cell Biochem Biophys 71:1341–1347PubMed
go back to reference He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215PubMed He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215PubMed
go back to reference Hernandez J, Torres-Espin A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther 6:273–287PubMed Hernandez J, Torres-Espin A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther 6:273–287PubMed
go back to reference Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M (2017) Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep 7:14684PubMedPubMedCentral Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M (2017) Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep 7:14684PubMedPubMedCentral
go back to reference Huang J-H et al (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma 34:3388–3396PubMed Huang J-H et al (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma 34:3388–3396PubMed
go back to reference Iessi E, Logozzi M, Lugini L, Azzarito T, Federici C, Spugnini EP, Mizzoni D, di Raimo R, Angelini DF, Battistini L, Cecchetti S, Fais S (2017) Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: a new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 32:648–657PubMedPubMedCentral Iessi E, Logozzi M, Lugini L, Azzarito T, Federici C, Spugnini EP, Mizzoni D, di Raimo R, Angelini DF, Battistini L, Cecchetti S, Fais S (2017) Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: a new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 32:648–657PubMedPubMedCentral
go back to reference Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14:207PubMedPubMedCentral Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14:207PubMedPubMedCentral
go back to reference Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead C, Fehlings M (2006a) Transplants of adult neural precursors in combination with growth factors and minocycline promote successful remyelination and neurobehavioral recovery after spinal cord injury. J Neurotrauma 23:785–785 Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead C, Fehlings M (2006a) Transplants of adult neural precursors in combination with growth factors and minocycline promote successful remyelination and neurobehavioral recovery after spinal cord injury. J Neurotrauma 23:785–785
go back to reference Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006b) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389PubMedPubMedCentral Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006b) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389PubMedPubMedCentral
go back to reference Khayrullina G, Bermudez S, Byrnes KR (2015) Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 12:172PubMedPubMedCentral Khayrullina G, Bermudez S, Byrnes KR (2015) Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 12:172PubMedPubMedCentral
go back to reference Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 113:170–175PubMed Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 113:170–175PubMed
go back to reference Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137PubMedPubMedCentral Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137PubMedPubMedCentral
go back to reference Liu W et al (2018) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484PubMed Liu W et al (2018) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484PubMed
go back to reference Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol 42:710–715PubMed Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol 42:710–715PubMed
go back to reference Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057PubMed Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057PubMed
go back to reference McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, Besner GE (2018) Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg 53:1215–1220PubMedPubMedCentral McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, Besner GE (2018) Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg 53:1215–1220PubMedPubMedCentral
go back to reference Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I (2005) Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 25:9624–9636PubMedPubMedCentral Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I (2005) Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 25:9624–9636PubMedPubMedCentral
go back to reference Mligiliche NL, Xu Y, Matsumoto N, Ide C (2005) Survival of neural progenitor cells from the subventricular zone of the adult rat after transplantation into the host spinal cord of the same strain of adult rat. Anat Sci Int 80:229–234PubMed Mligiliche NL, Xu Y, Matsumoto N, Ide C (2005) Survival of neural progenitor cells from the subventricular zone of the adult rat after transplantation into the host spinal cord of the same strain of adult rat. Anat Sci Int 80:229–234PubMed
go back to reference Mo L-J et al (2018) Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer 119:492–502PubMedPubMedCentral Mo L-J et al (2018) Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer 119:492–502PubMedPubMedCentral
go back to reference Mohamadi Y, Moghahi SMHN, Mousavi M, Borhani-Haghighi M, Abolhassani F, Kashani IR, Hassanzadeh G (2019) Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J Chem Neuroanat 97:1–8PubMed Mohamadi Y, Moghahi SMHN, Mousavi M, Borhani-Haghighi M, Abolhassani F, Kashani IR, Hassanzadeh G (2019) Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J Chem Neuroanat 97:1–8PubMed
go back to reference Morel O, Toti F, Hugel B, Freyssinet J-M (2004) Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 11:156–164PubMed Morel O, Toti F, Hugel B, Freyssinet J-M (2004) Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 11:156–164PubMed
go back to reference Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233:5160–5169PubMed Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233:5160–5169PubMed
go back to reference Oka S, Honmou O, Akiyama Y, Sasaki M, Houkin K, Hashi K, Kocsis JD (2004) Autologous transplantation of expanded neural precursor cells into the demyelinated monkey spinal cord. Brain Res 1030:94–102PubMed Oka S, Honmou O, Akiyama Y, Sasaki M, Houkin K, Hashi K, Kocsis JD (2004) Autologous transplantation of expanded neural precursor cells into the demyelinated monkey spinal cord. Brain Res 1030:94–102PubMed
go back to reference Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340–350PubMed Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340–350PubMed
go back to reference Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine 34:328–334PubMedPubMedCentral Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine 34:328–334PubMedPubMedCentral
go back to reference Properzi F, Ferroni E, Poleggi A, Vinci R (2015) The regulation of exosome function in the CNS: implications for neurodegeneration Swiss medical weekly 12;145:w14204 Properzi F, Ferroni E, Poleggi A, Vinci R (2015) The regulation of exosome function in the CNS: implications for neurodegeneration Swiss medical weekly 12;145:w14204
go back to reference Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1:424–451PubMedPubMedCentral Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1:424–451PubMedPubMedCentral
go back to reference Ren K (2018) Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 107(3):271–284PubMed Ren K (2018) Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 107(3):271–284PubMed
go back to reference Ren Z, Zhou J, Xiong Z, Zhu F, Guo X (2019) Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci 23:52–60PubMed Ren Z, Zhou J, Xiong Z, Zhu F, Guo X (2019) Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci 23:52–60PubMed
go back to reference Rivero Vaccari JP et al (2016) Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem 136:39–48PubMed Rivero Vaccari JP et al (2016) Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem 136:39–48PubMed
go back to reference Sipski ML, Richards JS (2006) Spinal cord injury rehabilitation: state of the science. Am J Phys Med Rehabil 85:310–342PubMed Sipski ML, Richards JS (2006) Spinal cord injury rehabilitation: state of the science. Am J Phys Med Rehabil 85:310–342PubMed
go back to reference Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366:1940–1942PubMed Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366:1940–1942PubMed
go back to reference Stirling DP et al (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190PubMedPubMedCentral Stirling DP et al (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190PubMedPubMedCentral
go back to reference Teng YD et al (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101:3071–3076PubMedPubMedCentral Teng YD et al (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101:3071–3076PubMedPubMedCentral
go back to reference Torralba D et al (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 9:2658PubMedPubMedCentral Torralba D et al (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 9:2658PubMedPubMedCentral
go back to reference Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705PubMed Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705PubMed
go back to reference Verma M, Lam TK, Hebert E, Divi RL (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15:6PubMedPubMedCentral Verma M, Lam TK, Hebert E, Divi RL (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15:6PubMedPubMedCentral
go back to reference Vogel A, Upadhya R, Shetty AK (2018) Neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders. EBioMedicine 8:273–282 Vogel A, Upadhya R, Shetty AK (2018) Neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders. EBioMedicine 8:273–282
go back to reference Wang Y, Wang J, Yang H, Zhou J, Feng X, Wang H, Tao Y (2015) Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224–232PubMed Wang Y, Wang J, Yang H, Zhou J, Feng X, Wang H, Tao Y (2015) Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224–232PubMed
go back to reference Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715PubMedPubMedCentral Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715PubMedPubMedCentral
go back to reference Zendedel A, Johann S, Mehrabi S, Joghataei M-t, Hassanzadeh G, Kipp M, Beyer C (2016) Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol Neurobiol 53:3063–3075PubMed Zendedel A, Johann S, Mehrabi S, Joghataei M-t, Hassanzadeh G, Kipp M, Beyer C (2016) Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol Neurobiol 53:3063–3075PubMed
go back to reference Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867PubMedPubMedCentral Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867PubMedPubMedCentral
go back to reference Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548:52PubMedPubMedCentral Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548:52PubMedPubMedCentral
go back to reference Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedPubMedCentral Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedPubMedCentral
Metadata
Title
Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation
Authors
Ibrahim Mohammed
Sahar Ijaz
Tahmineh Mokhtari
Morteza Gholaminejhad
Marzieh Mahdavipour
Behnamedin Jameie
Mohammad Akbari
Gholamreza Hassanzadeh
Publication date
01-06-2020
Publisher
Springer US
Keyword
Laminectomy
Published in
Metabolic Brain Disease / Issue 5/2020
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-020-00563-w

Other articles of this Issue 5/2020

Metabolic Brain Disease 5/2020 Go to the issue