Skip to main content
Top
Published in: Metabolic Brain Disease 3/2020

01-03-2020 | Alzheimer's Disease | Original Article

Circadian learning and memory changes in Aβ1–42 induced Alzheimer’s mice

Authors: Xuepei Li, Junwen Guan, Tong Sun, Jingguo Yang, Hang Yu, Junjie Yao, Zhengrong Wang

Published in: Metabolic Brain Disease | Issue 3/2020

Login to get access

Abstract

Alzheimer disease (AD) is a growing health problem globally, which causes a progressive decline in learning and memory and multiple disturbances of circadian rhythms. Six Alzheimer’s mice and six wild type (WT) mice were involved in this study. Morris Water Maze (MWM) tasks were conducted hourly to evaluate their circadian learning and memory performance. We used a single cosinor-based method to evaluate the circadian learning and memory of Alzheimer’s mice and WT mice, respectively. An area sensor was used to record locomotor activity for 2 weeks continuously, including 7 days of 12 h light/12 h dark (LD) conditions and 7 days of 12 h dark/12 h dark (DD) conditions. All WT mice showed circadian rhythm presence in learning and memory, and the peak of escape latency appeared at circadian time (CT) 12. Only one in six Alzheimer’s mice showed a circadian rhythm, but the peak of escape latency was postponed to CT20. Alzheimer’s mice showed rhythm absence under LD or DD conditions. Under LD conditions, the WT mice activity was higher than that in the Alzheimer’s mice during ZT0–5 (p = 0.007) and ZT18–23 (p = 0.353) but lower during ZT6–11 (p < 0.001) and ZT12–17 (p < 0.001). Learning and memory of wild type mice is proved to have a circadian variation throughout a day. In Alzheimer’s mice, rhythmic locomotor activity and circadian learning and memory performance were disrupted. Understanding the role of rhythmic disturbances in the process of AD may assist to identify therapeutic targets.
Literature
go back to reference Alzheimer's Association (2016) Alzheimer's disease facts and figures. Alzheimers Dement 12(4):459–509CrossRef Alzheimer's Association (2016) Alzheimer's disease facts and figures. Alzheimers Dement 12(4):459–509CrossRef
go back to reference American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, 4th Ed., Text Revision. American Psychiatric Association, Washington, DC American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, 4th Ed., Text Revision. American Psychiatric Association, Washington, DC
go back to reference Boggs KN, Kakalec PA, Smith ML, Howell SN, Flinn JM (2017) Circadian wheel running behavior is altered in an APP/E4 mouse model of late onset Alzheimer’s disease. Physiol Behav 182:137–142CrossRefPubMed Boggs KN, Kakalec PA, Smith ML, Howell SN, Flinn JM (2017) Circadian wheel running behavior is altered in an APP/E4 mouse model of late onset Alzheimer’s disease. Physiol Behav 182:137–142CrossRefPubMed
go back to reference Cornelissen G (1990) From various kinds of heart rate variability to chronocardiology. Am J Cardiol 66:863–868CrossRefPubMed Cornelissen G (1990) From various kinds of heart rate variability to chronocardiology. Am J Cardiol 66:863–868CrossRefPubMed
go back to reference Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP, St Clair DK, Donohue KD, Striz M, O'Hara BF (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer’s disease. Exp Neurol 236(2):249–258CrossRefPubMed Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP, St Clair DK, Donohue KD, Striz M, O'Hara BF (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer’s disease. Exp Neurol 236(2):249–258CrossRefPubMed
go back to reference Eckel-Mahan KL, Phan T, Han S, Wang H, Chan GC, Scheiner ZS, Storm DR (2008) Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci 11(9):1074–1082CrossRefPubMedPubMedCentral Eckel-Mahan KL, Phan T, Han S, Wang H, Chan GC, Scheiner ZS, Storm DR (2008) Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci 11(9):1074–1082CrossRefPubMedPubMedCentral
go back to reference Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla F, Olschowka JA, O'Banion MK (2013) Sustained Interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064CrossRefPubMedPubMedCentral Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla F, Olschowka JA, O'Banion MK (2013) Sustained Interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064CrossRefPubMedPubMedCentral
go back to reference Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U (2008) Regulation of monoamine oxidase a by circadian-clock components implies clock influence on mood. Curr Biol 18(9):678–683CrossRefPubMed Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U (2008) Regulation of monoamine oxidase a by circadian-clock components implies clock influence on mood. Curr Biol 18(9):678–683CrossRefPubMed
go back to reference Harper DG, Stopa EG, McKee AC et al (2004) Dementia severity and lewy bodies affect circadian rhythms in Alzheimer disease. Neurobiol Aging 25(6):771–781CrossRefPubMed Harper DG, Stopa EG, McKee AC et al (2004) Dementia severity and lewy bodies affect circadian rhythms in Alzheimer disease. Neurobiol Aging 25(6):771–781CrossRefPubMed
go back to reference Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20:377–388PubMed Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20:377–388PubMed
go back to reference Kerren C, Linde-Domingo J, Hanslmayr S et al (2018) An optimal oscillatory phase for pattern reactivation during memory retrieval. Curr Biol 28:3383–3392CrossRefPubMed Kerren C, Linde-Domingo J, Hanslmayr S et al (2018) An optimal oscillatory phase for pattern reactivation during memory retrieval. Curr Biol 28:3383–3392CrossRefPubMed
go back to reference Konsman JP (2003) The mouse brain in stereotaxic coordinates. Psychoneuroendocrino 28(6):827–828CrossRef Konsman JP (2003) The mouse brain in stereotaxic coordinates. Psychoneuroendocrino 28(6):827–828CrossRef
go back to reference Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180–4184CrossRefPubMedPubMedCentral Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 102:4180–4184CrossRefPubMedPubMedCentral
go back to reference Leifer BP (2003) Early diagnosis of Alzheimer’s disease: clinical and economic benefits. J Am Geriatr Soc 51:S281–S288CrossRefPubMed Leifer BP (2003) Early diagnosis of Alzheimer’s disease: clinical and economic benefits. J Am Geriatr Soc 51:S281–S288CrossRefPubMed
go back to reference Lim MM, Gerstner JR, Holtzman DM (2014) The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag 5:351–362CrossRef Lim MM, Gerstner JR, Holtzman DM (2014) The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag 5:351–362CrossRef
go back to reference Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 9:63–75CrossRefPubMed Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 9:63–75CrossRefPubMed
go back to reference Rose KM, Beck C, Tsai PF, Liem PH, Davila DG, Kleban M, Gooneratne NS, Kalra G, Richards KC (2011) Sleep disturbances and nocturnal agitation behaviors in older adults with dementia. Sleep. 34(6):779–786PubMedPubMedCentral Rose KM, Beck C, Tsai PF, Liem PH, Davila DG, Kleban M, Gooneratne NS, Kalra G, Richards KC (2011) Sleep disturbances and nocturnal agitation behaviors in older adults with dementia. Sleep. 34(6):779–786PubMedPubMedCentral
go back to reference Sarazin M, Berr C, De Rotrou J et al (2007) Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 69(19):1859–1867CrossRefPubMed Sarazin M, Berr C, De Rotrou J et al (2007) Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 69(19):1859–1867CrossRefPubMed
go back to reference Schenck CH, Boeve BF, Mahowald MW (2013) Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med Aug 14(8):744–748CrossRef Schenck CH, Boeve BF, Mahowald MW (2013) Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med Aug 14(8):744–748CrossRef
go back to reference Schmidt C, Collette F, Cajochen C et al (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 27:755–789CrossRef Schmidt C, Collette F, Cajochen C et al (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 27:755–789CrossRef
go back to reference Schnöder L, Hao W, Qin Y et al (2015) Deficiency of neuronal p38α MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating Lysosomal degradation of BACE1. J Biol Chem 291(5):2067–2079CrossRefPubMedPubMedCentral Schnöder L, Hao W, Qin Y et al (2015) Deficiency of neuronal p38α MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating Lysosomal degradation of BACE1. J Biol Chem 291(5):2067–2079CrossRefPubMedPubMedCentral
go back to reference Sterniczuk R, Theou O, Rusak B, Rockwood K (2013) Sleep disturbance is associated with incident dementia and mortality. Curr Alzheimer Res 10(7):767–775CrossRefPubMed Sterniczuk R, Theou O, Rusak B, Rockwood K (2013) Sleep disturbance is associated with incident dementia and mortality. Curr Alzheimer Res 10(7):767–775CrossRefPubMed
go back to reference Tractenberg RE, Singer CM, Kaye JA (2005) Symptoms of sleep disturbance in persons with Alzheimer's disease and normal elderly. J Sleep Res 14(2):177–185CrossRefPubMedPubMedCentral Tractenberg RE, Singer CM, Kaye JA (2005) Symptoms of sleep disturbance in persons with Alzheimer's disease and normal elderly. J Sleep Res 14(2):177–185CrossRefPubMedPubMedCentral
go back to reference Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2011) The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 8(1 Suppl):S1–S68PubMedPubMedCentral Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2011) The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 8(1 Suppl):S1–S68PubMedPubMedCentral
go back to reference Yu L, Wang S, Chen X, Yang H, Li X, Xu Y, Zhu X (2015) Orientin alleviates cognitive deficits and oxidative stress in Aβ1–42-induced mouse model of Alzheimer’s disease. Life Sci 121:104–109CrossRefPubMed Yu L, Wang S, Chen X, Yang H, Li X, Xu Y, Zhu X (2015) Orientin alleviates cognitive deficits and oxidative stress in Aβ1–42-induced mouse model of Alzheimer’s disease. Life Sci 121:104–109CrossRefPubMed
go back to reference Zhu X, Chen C, Ye D et al (2012) Diammonium glycyrrhizinate upregulates PGC-1alpha and protects against Abeta1–42-induced neurotoxicity, PLoS One. 7 e35823.CrossRefPubMedPubMedCentral Zhu X, Chen C, Ye D et al (2012) Diammonium glycyrrhizinate upregulates PGC-1alpha and protects against Abeta1–42-induced neurotoxicity, PLoS One. 7 e35823.CrossRefPubMedPubMedCentral
Metadata
Title
Circadian learning and memory changes in Aβ1–42 induced Alzheimer’s mice
Authors
Xuepei Li
Junwen Guan
Tong Sun
Jingguo Yang
Hang Yu
Junjie Yao
Zhengrong Wang
Publication date
01-03-2020
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 3/2020
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-019-00509-x

Other articles of this Issue 3/2020

Metabolic Brain Disease 3/2020 Go to the issue