Skip to main content
Top
Published in: Metabolic Brain Disease 5/2019

01-10-2019 | Original Article

Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice

Authors: Man-Yi Jing, Xiao Han, Tai-Yun Zhao, Zhi-Yuan Wang, Guan-Yi Lu, Ning Wu, Rui Song, Jin Li

Published in: Metabolic Brain Disease | Issue 5/2019

Login to get access

Abstract

The precise contributions of ventral tegmental area (VTA) dopaminergic (DAergic) neurons to reward-related behaviors are a longstanding hot topic of debate. Whether the activity of VTA DAergic neurons directly modulates rewarding behaviors remains uncertain. In the present study, we investigated the fundamental role of VTA DAergic neurons in reward-related movement and reinforcement by employing dopamine transporter (DAT)-Cre transgenic mice expressing hM3Dq, hM4Di or channelrhodopsin 2 (ChR2) in VTA DAergic neurons through Cre-inducible adeno-associated viral vector transfection. On the one hand, locomotion was tested in an open field to examine motor activity when VTA DAergic neurons were stimulated or inhibited by injection of the hM3Dq or hM4Di ligand clozapine-N-oxide (CNO), respectively. CNO injection to selectively activate or inhibit VTA DAergic neurons significantly increased or decreased locomotor activity, respectively, compared with vehicle injection, indicating that VTA DAergic neuron stimulation is directly involved in the regulation of motor activity. On the other hand, we used the optical intracranial self-stimulation (oICSS) model to investigate the causal link between reinforcement and VTA DAergic neurons. Active poking behavior but not inactive poking behavior was significantly escalated in a frequency- and pulse duration-dependent manner. In addition, microdialysis revealed that the concentration of dopamine (DA) in the nucleus accumbens (NAc) was enhanced by selective optogenetic activation of VTA DAergic neurons. Furthermore, systemic administration of a DA D1 receptor antagonist significantly decreased oICSS reinforcement. Our research profoundly demonstrates a direct regulatory role of VTA DAergic neurons in movement and reinforcement and provides meaningful guidance for the development of novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.
Literature
go back to reference Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):10829–10835CrossRefPubMedPubMedCentral Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):10829–10835CrossRefPubMedPubMedCentral
go back to reference Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344–1352PubMedPubMedCentral Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344–1352PubMedPubMedCentral
go back to reference Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369CrossRefPubMed Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369CrossRefPubMed
go back to reference David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33(7):1746–1759CrossRefPubMed David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33(7):1746–1759CrossRefPubMed
go back to reference Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142(3):221–229CrossRefPubMed Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142(3):221–229CrossRefPubMed
go back to reference Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278CrossRefPubMedPubMedCentral Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278CrossRefPubMedPubMedCentral
go back to reference Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors--physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156CrossRefPubMed Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors--physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156CrossRefPubMed
go back to reference Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326(1):76–82CrossRefPubMed Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326(1):76–82CrossRefPubMed
go back to reference Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates. New York, the United States, Academic Press Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates. New York, the United States, Academic Press
go back to reference Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612CrossRefPubMed Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612CrossRefPubMed
go back to reference Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656CrossRefPubMed Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656CrossRefPubMed
go back to reference Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7(4):e33612CrossRefPubMedPubMedCentral Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7(4):e33612CrossRefPubMedPubMedCentral
go back to reference McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152CrossRefPubMed McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152CrossRefPubMed
go back to reference Minogianis EA, Shams WM, Mabrouk OS, Wong JT, Brake WG, Kennedy RT, du Souich P, Samaha AN (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Federation of European Neuroscience Societies and John Wiley & Sons Publishing Eur J Neurosci. https://doi.org/10.1111/ejn.13941. Accessed 14 May 2018 Minogianis EA, Shams WM, Mabrouk OS, Wong JT, Brake WG, Kennedy RT, du Souich P, Samaha AN (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Federation of European Neuroscience Societies and John Wiley & Sons Publishing Eur J Neurosci. https://​doi.​org/​10.​1111/​ejn.​13941. Accessed 14 May 2018
go back to reference Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144CrossRefPubMed Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144CrossRefPubMed
go back to reference Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88(5):1054–1066CrossRefPubMed Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88(5):1054–1066CrossRefPubMed
go back to reference Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90(4):894–903CrossRefPubMed Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90(4):894–903CrossRefPubMed
go back to reference Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799CrossRefPubMedPubMedCentral Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799CrossRefPubMedPubMedCentral
go back to reference Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61(1):65–69CrossRefPubMed Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61(1):65–69CrossRefPubMed
go back to reference Schrantee A, Tamminga HG, Bouziane C, Bottelier MA, Bron EE, Mutsaerts HJ, Zwinderman AH, Groote IR, Rombouts SA, Lindauer RJ, Klein S, Niessen WJ, Opmeer BC, Boer F, Lucassen PJ, Andersen SL, Geurts HM, Reneman L (2016) Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: a randomized clinical trial. JAMA Psychiatry 73(9):955–962CrossRefPubMedPubMedCentral Schrantee A, Tamminga HG, Bouziane C, Bottelier MA, Bron EE, Mutsaerts HJ, Zwinderman AH, Groote IR, Rombouts SA, Lindauer RJ, Klein S, Niessen WJ, Opmeer BC, Boer F, Lucassen PJ, Andersen SL, Geurts HM, Reneman L (2016) Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: a randomized clinical trial. JAMA Psychiatry 73(9):955–962CrossRefPubMedPubMedCentral
go back to reference Sikstrom S, Soderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114(4):1047–1075CrossRefPubMed Sikstrom S, Soderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114(4):1047–1075CrossRefPubMed
go back to reference Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837CrossRefPubMedPubMedCentral Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837CrossRefPubMedPubMedCentral
go back to reference Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64CrossRefPubMed Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64CrossRefPubMed
go back to reference Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):e94771CrossRefPubMedPubMedCentral Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):e94771CrossRefPubMedPubMedCentral
go back to reference Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084CrossRefPubMedPubMedCentral Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084CrossRefPubMedPubMedCentral
go back to reference Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733CrossRefPubMedPubMedCentral Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733CrossRefPubMedPubMedCentral
go back to reference Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79(6):945–955CrossRefPubMed Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79(6):945–955CrossRefPubMed
Metadata
Title
Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice
Authors
Man-Yi Jing
Xiao Han
Tai-Yun Zhao
Zhi-Yuan Wang
Guan-Yi Lu
Ning Wu
Rui Song
Jin Li
Publication date
01-10-2019
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 5/2019
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-019-00442-z

Other articles of this Issue 5/2019

Metabolic Brain Disease 5/2019 Go to the issue