Skip to main content
Top
Published in: Metabolic Brain Disease 2/2015

01-04-2015 | Research Article

Recent advances in the pharmacologic treatment of spinal cord injury

Authors: April Cox, Abhay Varma, Naren Banik

Published in: Metabolic Brain Disease | Issue 2/2015

Login to get access

Abstract

A need exists for the effective treatment of individuals suffering from spinal cord injury (SCI). Recent advances in the understanding of the pathophysiological mechanisms occurring in SCI have resulted in an expansion of new therapeutic targets. This review summarizes both preclinical and clinical findings investigating the mechanisms and cognate pharmacologic therapeutics targeted to modulate hypoxia, ischemia, excitotoxicity, inflammation, apoptosis, epigenetic alterations, myelin regeneration and scar remodeling. Successful modulation of these targets has been demonstrated in both preclinical and clinical studies with agents such as Oxycyte, Minocycline, Riluzole, Premarin, Cethrin, and ATI-355. The translation of these agents into clinical studies highlights the progress the field has made in the past decade. SCI proves to be a complex condition; the numerous pathophysiological mechanisms occurring at varying time points suggests that a single agent approach to the treatment of SCI may not be optimal. As the field continues to mature, the hope is that the knowledge gained from these studies will be applied to the development of an effective multi-pronged treatment strategy for SCI.
Literature
go back to reference Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100PubMedCentralPubMed Abdanipour A, Schluesener HJ, Tiraihi T (2012) Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 16(2):90–100PubMedCentralPubMed
go back to reference Ahmed Z, Bansal D, Tizzard K, Surey S, Esmaeili M, Douglas MR, Gonzalez AM, Berry M, Logan A (2013) Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis. doi:10.1016/j.nbd.2013.12.008 PubMedCentral Ahmed Z, Bansal D, Tizzard K, Surey S, Esmaeili M, Douglas MR, Gonzalez AM, Berry M, Logan A (2013) Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis. doi:10.​1016/​j.​nbd.​2013.​12.​008 PubMedCentral
go back to reference Akdemir O, Ucankale M, Karaoglan A, Barut S, Sagmanligil A, Bilguvar K, Cirakoglu B, Sahan E, Colak A (2008) Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci: Off J Neurosurg Soc Australa 15(10):1130–1136. doi:10.1016/j.jocn.2007.08.011 CrossRef Akdemir O, Ucankale M, Karaoglan A, Barut S, Sagmanligil A, Bilguvar K, Cirakoglu B, Sahan E, Colak A (2008) Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci: Off J Neurosurg Soc Australa 15(10):1130–1136. doi:10.​1016/​j.​jocn.​2007.​08.​011 CrossRef
go back to reference Anthes DL, Theriault E, Tator CH (1995) Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res 702(1–2):1–16CrossRefPubMed Anthes DL, Theriault E, Tator CH (1995) Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res 702(1–2):1–16CrossRefPubMed
go back to reference Arataki S, Tomizawa K, Moriwaki A, Nishida K, Matsushita M, Ozaki T, Kunisada T, Yoshida A, Inoue H, Matsui H (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22(3):398–406. doi:10.1089/neu.2005.22.398 CrossRefPubMed Arataki S, Tomizawa K, Moriwaki A, Nishida K, Matsushita M, Ozaki T, Kunisada T, Yoshida A, Inoue H, Matsui H (2005) Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22(3):398–406. doi:10.​1089/​neu.​2005.​22.​398 CrossRefPubMed
go back to reference Banik NL, Powers JM, Hogan EL (1980) The effects of spinal cord trauma on myelin. J Neuropathol Exp Neurol 39(3):232–244CrossRefPubMed Banik NL, Powers JM, Hogan EL (1980) The effects of spinal cord trauma on myelin. J Neuropathol Exp Neurol 39(3):232–244CrossRefPubMed
go back to reference Banik NL, Hogan EL, Powers JM, Whetstine LJ (1982) Degradation of cytoskeletal proteins in experimental spinal cord injury. Neurochem Res 7(12):1465–1475CrossRefPubMed Banik NL, Hogan EL, Powers JM, Whetstine LJ (1982) Degradation of cytoskeletal proteins in experimental spinal cord injury. Neurochem Res 7(12):1465–1475CrossRefPubMed
go back to reference Bell MT, Puskas F, Agoston VA, Cleveland JC Jr, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128(11 Suppl 1):S152–S156. doi:10.1161/CIRCULATIONAHA.112.000024 CrossRefPubMed Bell MT, Puskas F, Agoston VA, Cleveland JC Jr, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128(11 Suppl 1):S152–S156. doi:10.​1161/​CIRCULATIONAHA.​112.​000024 CrossRefPubMed
go back to reference Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA: J Am Med Assoc 251(1):45–52CrossRef Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, Ransohoff J, Hunt WE, Perot PL Jr et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA: J Am Med Assoc 251(1):45–52CrossRef
go back to reference Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411. doi:10.1056/NEJM199005173222001 CrossRefPubMed Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411. doi:10.​1056/​NEJM199005173222​001 CrossRefPubMed
go back to reference Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 h or tirilazad mesylate for 48 h in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA: J Am Med Assoc 277(20):1597–1604CrossRef Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 h or tirilazad mesylate for 48 h in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA: J Am Med Assoc 277(20):1597–1604CrossRef
go back to reference Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156. doi:10.1084/jem.20041918 CrossRefPubMedCentralPubMed Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156. doi:10.​1084/​jem.​20041918 CrossRefPubMedCentralPubMed
go back to reference Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci: Off J Soc Neurosci 20(21):8061–8068 Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME (2000) Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci: Off J Soc Neurosci 20(21):8061–8068
go back to reference Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci: Off J Soc Neurosci 31(3):944–953. doi:10.1523/JNEUROSCI.3566-10.2011 CrossRef Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci: Off J Soc Neurosci 31(3):944–953. doi:10.​1523/​JNEUROSCI.​3566-10.​2011 CrossRef
go back to reference Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain: J Neurol 130(Pt 11):2977–2992. doi:10.1093/brain/awm179 CrossRef Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain: J Neurol 130(Pt 11):2977–2992. doi:10.​1093/​brain/​awm179 CrossRef
go back to reference Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain: J Neurol 135(Pt 4):1224–1236. doi:10.1093/brain/aws072 CrossRef Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain: J Neurol 135(Pt 4):1224–1236. doi:10.​1093/​brain/​aws072 CrossRef
go back to reference Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, Dietrich WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17(4):321–332CrossRefPubMed Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, Dietrich WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17(4):321–332CrossRefPubMed
go back to reference Chen SH, Yeh CH, Lin MY, Kang CY, Chu CC, Chang FM, Wang JJ (2010) Premarin improves outcomes of spinal cord injury in male rats through stimulating both angiogenesis and neurogenesis. Crit Care Med 38(10):2043–2051. doi:10.1097/CCM.0b013e3181ef44dc PubMed Chen SH, Yeh CH, Lin MY, Kang CY, Chu CC, Chang FM, Wang JJ (2010) Premarin improves outcomes of spinal cord injury in male rats through stimulating both angiogenesis and neurogenesis. Crit Care Med 38(10):2043–2051. doi:10.​1097/​CCM.​0b013e3181ef44dc​ PubMed
go back to reference De Nicola AF, Gonzalez SL, Labombarda F, Deniselle MC, Garay L, Guennoun R, Schumacher M (2006) Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Molec Neurosci MN 28(1):3–15. doi:10.1385/JMN:30:3:341 CrossRef De Nicola AF, Gonzalez SL, Labombarda F, Deniselle MC, Garay L, Guennoun R, Schumacher M (2006) Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Molec Neurosci MN 28(1):3–15. doi:10.​1385/​JMN:​30:​3:​341 CrossRef
go back to reference Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221CrossRefPubMed Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221CrossRefPubMed
go back to reference Donovan WH (2007) Donald Munro Lecture. Spinal cord injury–past, present, and future. J Spinal Cord Med 30(2):85–100PubMedCentralPubMed Donovan WH (2007) Donald Munro Lecture. Spinal cord injury–past, present, and future. J Spinal Cord Med 30(2):85–100PubMedCentralPubMed
go back to reference Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796. doi:10.1089/neu.2011.1765 CrossRefPubMed Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796. doi:10.​1089/​neu.​2011.​1765 CrossRefPubMed
go back to reference Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain: J Neurol 129(Pt 12):3249–3269. doi:10.1093/brain/awl296 CrossRef Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain: J Neurol 129(Pt 12):3249–3269. doi:10.​1093/​brain/​awl296 CrossRef
go back to reference Fujimoto T, Nakamura T, Ikeda T, Takagi K (2000) Potent protective effects of melatonin on experimental spinal cord injury. Spine 25(7):769–775CrossRefPubMed Fujimoto T, Nakamura T, Ikeda T, Takagi K (2000) Potent protective effects of melatonin on experimental spinal cord injury. Spine 25(7):769–775CrossRefPubMed
go back to reference Geisler FH, Coleman WP, Grieco G, Poonian D (2001) The Sygen multicenter acute spinal cord injury study. Spine 26(24 Suppl):S87–S98CrossRefPubMed Geisler FH, Coleman WP, Grieco G, Poonian D (2001) The Sygen multicenter acute spinal cord injury study. Spine 26(24 Suppl):S87–S98CrossRefPubMed
go back to reference Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci: Off J Soc Neurosci 24(16):4043–4051. doi:10.1523/JNEUROSCI.5343-03.2004 CrossRef Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci: Off J Soc Neurosci 24(16):4043–4051. doi:10.​1523/​JNEUROSCI.​5343-03.​2004 CrossRef
go back to reference Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2013) A prospective, multicenter, phase i matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. doi:10.1089/neu.2013.2969 PubMedCentral Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2013) A prospective, multicenter, phase i matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. doi:10.​1089/​neu.​2013.​2969 PubMedCentral
go back to reference Hunt D, Coffin RS, Anderson PN (2002) The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31(2):93–120CrossRefPubMed Hunt D, Coffin RS, Anderson PN (2002) The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol 31(2):93–120CrossRefPubMed
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci: Off J Soc Neurosci 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009 CrossRef Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci: Off J Soc Neurosci 29(43):13435–13444. doi:10.​1523/​JNEUROSCI.​3257-09.​2009 CrossRef
go back to reference Lee JY, Choi SY, Oh TH, Yune TY (2012) 17beta-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury. Endocrinology 153(8):3815–3827. doi:10.1210/en.2012-1068 CrossRefPubMed Lee JY, Choi SY, Oh TH, Yune TY (2012) 17beta-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury. Endocrinology 153(8):3815–3827. doi:10.​1210/​en.​2012-1068 CrossRefPubMed
go back to reference Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5(9):R66. doi:10.1186/gb-2004-5-9-r66 CrossRefPubMedCentralPubMed Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5(9):R66. doi:10.​1186/​gb-2004-5-9-r66 CrossRefPubMedCentralPubMed
go back to reference Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547(2):344–348CrossRefPubMed Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547(2):344–348CrossRefPubMed
go back to reference Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59(4):606–619. doi:10.1002/ana.20798 CrossRefPubMed Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59(4):606–619. doi:10.​1002/​ana.​20798 CrossRefPubMed
go back to reference Lu WH, Wang CY, Chen PS, Wang JW, Chuang DM, Yang CS, Tzeng SF (2013) Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 91(5):694–705. doi:10.1002/jnr.23200 CrossRefPubMed Lu WH, Wang CY, Chen PS, Wang JW, Chuang DM, Yang CS, Tzeng SF (2013) Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 91(5):694–705. doi:10.​1002/​jnr.​23200 CrossRefPubMed
go back to reference Mahon RT, Auker CR, Bradley SG, Mendelson A, Hall AA (2013) The emulsified perfluorocarbon Oxycyte improves spinal cord injury in a swine model of decompression sickness. Spinal Cord 51(3):188–192. doi:10.1038/sc.2012.135 CrossRefPubMed Mahon RT, Auker CR, Bradley SG, Mendelson A, Hall AA (2013) The emulsified perfluorocarbon Oxycyte improves spinal cord injury in a swine model of decompression sickness. Spinal Cord 51(3):188–192. doi:10.​1038/​sc.​2012.​135 CrossRefPubMed
go back to reference Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H (2010) Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment. Brain: J Neurol 133(Pt 4):1013–1025. doi:10.1093/brain/awq049 CrossRef Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H (2010) Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment. Brain: J Neurol 133(Pt 4):1013–1025. doi:10.​1093/​brain/​awq049 CrossRef
go back to reference Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320(3):1002–1012. doi:10.1124/jpet.106.113472 CrossRefPubMed Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320(3):1002–1012. doi:10.​1124/​jpet.​106.​113472 CrossRefPubMed
go back to reference Park S, Lee SK, Park K, Lee Y, Hong Y, Lee S, Jeon JC, Kim JH, Lee SR, Chang KT (2012) Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 52(1):107–119. doi:10.1111/j.1600-079X.2011.00925.x CrossRefPubMed Park S, Lee SK, Park K, Lee Y, Hong Y, Lee S, Jeon JC, Kim JH, Lee SR, Chang KT (2012) Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury. J Pineal Res 52(1):107–119. doi:10.​1111/​j.​1600-079X.​2011.​00925.​x CrossRefPubMed
go back to reference Ray SK, Wilford GG, Matzelle DC, Hogan EL, Banik NL (1999) Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 890:261–269CrossRefPubMed Ray SK, Wilford GG, Matzelle DC, Hogan EL, Banik NL (1999) Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 890:261–269CrossRefPubMed
go back to reference Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL (2001) Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939:436–449CrossRefPubMed Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL (2001) Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939:436–449CrossRefPubMed
go back to reference Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42(2):169–185CrossRefPubMed Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42(2):169–185CrossRefPubMed
go back to reference Samantaray S, Smith JA, Das A, Matzelle DD, Varma AK, Ray SK, Banik NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36(10):1809–1816. doi:10.1007/s11064-011-0498-y CrossRefPubMedCentralPubMed Samantaray S, Smith JA, Das A, Matzelle DD, Varma AK, Ray SK, Banik NL (2011) Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 36(10):1809–1816. doi:10.​1007/​s11064-011-0498-y CrossRefPubMedCentralPubMed
go back to reference Schiaveto-de-Souza A, da Silva CA, Defino HL, Del Bel EA (2013) Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz J Med Biol Res Rev Bras Pesquisas Med Biol/Soc Bras Biofis [et al] 46(4):348–358 Schiaveto-de-Souza A, da Silva CA, Defino HL, Del Bel EA (2013) Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord. Braz J Med Biol Res Rev Bras Pesquisas Med Biol/Soc Bras Biofis [et al] 46(4):348–358
go back to reference Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272. doi:10.1038/343269a0 CrossRefPubMed Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272. doi:10.​1038/​343269a0 CrossRefPubMed
go back to reference Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94(2 Suppl):245–256PubMed Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94(2 Suppl):245–256PubMed
go back to reference Siriphorn A, Dunham KA, Chompoopong S, Floyd CL (2012) Postinjury administration of 17beta-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 520(12):2630–2646. doi:10.1002/cne.23056 CrossRefPubMed Siriphorn A, Dunham KA, Chompoopong S, Floyd CL (2012) Postinjury administration of 17beta-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 520(12):2630–2646. doi:10.​1002/​cne.​23056 CrossRefPubMed
go back to reference Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E, Yilmaz C, Caner H, Altinors N (2013) Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine 38(15):1253–1259. doi:10.1097/BRS.0b013e3182895587 CrossRefPubMed Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E, Yilmaz C, Caner H, Altinors N (2013) Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine 38(15):1253–1259. doi:10.​1097/​BRS.​0b013e3182895587​ CrossRefPubMed
go back to reference Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69(4):1592–1600CrossRefPubMed Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69(4):1592–1600CrossRefPubMed
go back to reference Sribnick EA, Matzelle DD, Banik NL, Ray SK (2007) Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 32(12):2210–2216. doi:10.1007/s11064-007-9433-7 CrossRefPubMed Sribnick EA, Matzelle DD, Banik NL, Ray SK (2007) Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 32(12):2210–2216. doi:10.​1007/​s11064-007-9433-7 CrossRefPubMed
go back to reference Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88(8):1738–1750. doi:10.1002/jnr.22337 PubMedCentralPubMed Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88(8):1738–1750. doi:10.​1002/​jnr.​22337 PubMedCentralPubMed
go back to reference Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci: Off J Soc Neurosci 24(9):2182–2190. doi:10.1523/jneurosci.5275-03.2004 CrossRef Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci: Off J Soc Neurosci 24(9):2182–2190. doi:10.​1523/​jneurosci.​5275-03.​2004 CrossRef
go back to reference Takeda M, Kawaguchi M, Kumatoriya T, Horiuchi T, Watanabe K, Inoue S, Konishi N, Furuya H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36(23):1919–1924. doi:10.1097/BRS.0b013e3181ffda29 CrossRefPubMed Takeda M, Kawaguchi M, Kumatoriya T, Horiuchi T, Watanabe K, Inoue S, Konishi N, Furuya H (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine 36(23):1919–1924. doi:10.​1097/​BRS.​0b013e3181ffda29​ CrossRefPubMed
go back to reference Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076. doi:10.1073/pnas.0306239101 CrossRefPubMedCentralPubMed Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076. doi:10.​1073/​pnas.​0306239101 CrossRefPubMedCentralPubMed
go back to reference Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24(20):2134–2138CrossRefPubMed Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24(20):2134–2138CrossRefPubMed
go back to reference Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57(14):1521–1537. doi:10.1002/glia.20867 CrossRefPubMed Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57(14):1521–1537. doi:10.​1002/​glia.​20867 CrossRefPubMed
go back to reference Tsai EC, Tator CH (2005) Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des 11(10):1211–1222CrossRefPubMed Tsai EC, Tator CH (2005) Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des 11(10):1211–1222CrossRefPubMed
go back to reference Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain: J Neurol 126(Pt 7):1628–1637. doi:10.1093/brain/awg178 CrossRef Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain: J Neurol 126(Pt 7):1628–1637. doi:10.​1093/​brain/​awg178 CrossRef
go back to reference Yacoub A, Hajec MC, Stanger R, Wan W, Young H, Mathern BE (2013) Neuroprotective effects of perflurocarbon (Oxycyte) after contusive spinal cord injury. J Neurotrauma. doi:10.1089/neu.2013.3037 Yacoub A, Hajec MC, Stanger R, Wan W, Young H, Mathern BE (2013) Neuroprotective effects of perflurocarbon (Oxycyte) after contusive spinal cord injury. J Neurotrauma. doi:10.​1089/​neu.​2013.​3037
Metadata
Title
Recent advances in the pharmacologic treatment of spinal cord injury
Authors
April Cox
Abhay Varma
Naren Banik
Publication date
01-04-2015
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 2/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9547-y

Other articles of this Issue 2/2015

Metabolic Brain Disease 2/2015 Go to the issue