Skip to main content
Top
Published in: Journal of Medical Systems 3/2019

01-03-2019 | Systems-Level Quality Improvement

Machine Learning Can Improve Estimation of Surgical Case Duration: A Pilot Study

Authors: Justin P. Tuwatananurak, Shayan Zadeh, Xinling Xu, Joshua A. Vacanti, William R. Fulton, Jesse M. Ehrenfeld, Richard D. Urman

Published in: Journal of Medical Systems | Issue 3/2019

Login to get access

Abstract

Operating room (OR) utilization is a significant determinant of hospital profitability. One aspect of this is surgical scheduling, which depends on accurate predictions of case duration. This has been done historically by either the surgeon based on personal experience, or by an electronic health record (EHR) based on averaged historical means for case duration. Here, we compare the predicted case duration (pCD) accuracy of a novel machine-learning algorithm over a 3-month period. A proprietary machine learning algorithm was applied utilizing operating room factors such as patient demographic data, pre-surgical milestones, and hospital logistics and compared to that of a conventional EHR. Actual case duration and pCD (Leap Rail vs EHR) was obtained at one institution over the span of 3 months. Actual case duration was defined as time between patient entry into an OR and time of exit. pCD was defined as case time allotted by either Leap Rail or EHR. Cases where Leap Rail was unable to generate a pCD were excluded. A total of 1059 surgical cases were performed during the study period, with 990 cases being eligible for the study. Over all sub-specialties, Leap Rail showed a 7 min improvement in absolute difference between pCD and actual case duration when compared to conventional EHR (p < 0.0001). In aggregate, the Leap Rail method resulted in a 70% reduction in overall scheduling inaccuracy. Machine-learning algorithms are a promising method of increasing pCD accuracy and represent one means of improving OR planning and efficiency.
Literature
1.
go back to reference Gordon, T., Paul, S., Lyles, A., and Fountain, J., Surgical unit time utilization review: Resource utilization and management implications. J. Med. Syst. 12(3):169–179, 1988.CrossRef Gordon, T., Paul, S., Lyles, A., and Fountain, J., Surgical unit time utilization review: Resource utilization and management implications. J. Med. Syst. 12(3):169–179, 1988.CrossRef
2.
go back to reference Peltokorpi, A., How do strategic decisions and operative practices affect operating room productivity? Health Care Manag. Sci. 14(4):370–382, 2011.CrossRef Peltokorpi, A., How do strategic decisions and operative practices affect operating room productivity? Health Care Manag. Sci. 14(4):370–382, 2011.CrossRef
3.
go back to reference Gabriel, R. A., Wu, A., Huang, C. C., Dutton, R. P., and Urman, R. D., National incidences and predictors of inefficiencies in perioperative care. J. Clin. Anesth. 31:238–246, 2016.CrossRef Gabriel, R. A., Wu, A., Huang, C. C., Dutton, R. P., and Urman, R. D., National incidences and predictors of inefficiencies in perioperative care. J. Clin. Anesth. 31:238–246, 2016.CrossRef
4.
go back to reference May, J. H., Spangler, W. E., Strum, D. P., and Vargas, L. G., The surgical scheduling problem: Current research and future opportunities. Prod. Oper. Manag. 20(3):392–405, 2011.CrossRef May, J. H., Spangler, W. E., Strum, D. P., and Vargas, L. G., The surgical scheduling problem: Current research and future opportunities. Prod. Oper. Manag. 20(3):392–405, 2011.CrossRef
5.
go back to reference Tankard, K., Acciavatti, T. D., Vacanti, J. C. et al., Contributors to operating room underutilization and implications for hospital administrators. Health Care Manag. (Frederick). 37(2):118–128, 2018.PubMed Tankard, K., Acciavatti, T. D., Vacanti, J. C. et al., Contributors to operating room underutilization and implications for hospital administrators. Health Care Manag. (Frederick). 37(2):118–128, 2018.PubMed
6.
go back to reference Laskin, D. M., Abubaker, A. O., and Strauss, R. A., Accuracy of predicting the duration of a surgical operation. J. Oral Maxillofac. Surg. 71(2):446–447, 2013.CrossRef Laskin, D. M., Abubaker, A. O., and Strauss, R. A., Accuracy of predicting the duration of a surgical operation. J. Oral Maxillofac. Surg. 71(2):446–447, 2013.CrossRef
7.
go back to reference Wu, A., Huang, C. C., Weaver, M. J., and Urman, R. D., Use of historical surgical times to predict duration of primary Total knee arthroplasty. J. Arthroplasty. 31(12):2768–2772, 2016.CrossRef Wu, A., Huang, C. C., Weaver, M. J., and Urman, R. D., Use of historical surgical times to predict duration of primary Total knee arthroplasty. J. Arthroplasty. 31(12):2768–2772, 2016.CrossRef
8.
go back to reference Stepaniak, P. S., Heij, C., Mannaerts, G. H., De quelerij, M., and De vries, G., Modeling procedure and surgical times for current procedural terminology-anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and operating room efficiency: A multicenter study. Anesth. Analg. 109(4):1232–1245, 2009.CrossRef Stepaniak, P. S., Heij, C., Mannaerts, G. H., De quelerij, M., and De vries, G., Modeling procedure and surgical times for current procedural terminology-anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and operating room efficiency: A multicenter study. Anesth. Analg. 109(4):1232–1245, 2009.CrossRef
9.
go back to reference Eijkemans, M. J., Van houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., and Kazemier, G., Predicting the unpredictable: A new prediction model for operating room times using individual characteristics and the surgeon's estimate. Anesthesiology. 112(1):41–49, 2010.CrossRef Eijkemans, M. J., Van houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., and Kazemier, G., Predicting the unpredictable: A new prediction model for operating room times using individual characteristics and the surgeon's estimate. Anesthesiology. 112(1):41–49, 2010.CrossRef
10.
go back to reference Bishop, C., Pattern recognition and machine learning. Berlin: Springer, 2006, ISBN 0-387-31073-8. Bishop, C., Pattern recognition and machine learning. Berlin: Springer, 2006, ISBN 0-387-31073-8.
11.
go back to reference Mason, L., Baxter, J. Bartlett, P. L., and Frean, M., Boosting algorithms as gradient descent. In S.A. Solla and T.K. Leen and K. Müller. Advances in neural information processing systems 12. MIT Press. 512–518, 1999. Mason, L., Baxter, J. Bartlett, P. L., and Frean, M., Boosting algorithms as gradient descent. In S.A. Solla and T.K. Leen and K. Müller. Advances in neural information processing systems 12. MIT Press. 512–518, 1999.
12.
go back to reference Rokach, Lior, and Maimon, O., Data mining with decision trees: Theory and applications. World Scientific Pub Co Inc. ISBN 978-9812771711, 2008. Rokach, Lior, and Maimon, O., Data mining with decision trees: Theory and applications. World Scientific Pub Co Inc. ISBN 978-9812771711, 2008.
14.
go back to reference Russell, S. J., and Norvig, P., Artificial intelligence: A modern approach. Pearson, 2016. Russell, S. J., and Norvig, P., Artificial intelligence: A modern approach. Pearson, 2016.
15.
go back to reference Dexter, F., and Macario, A., Decrease in case duration required to complete an additional case during regularly scheduled hours in an operating room suite: A computer simulation study. Anesth. Analg. 88(1):72–76, 1999.PubMed Dexter, F., and Macario, A., Decrease in case duration required to complete an additional case during regularly scheduled hours in an operating room suite: A computer simulation study. Anesth. Analg. 88(1):72–76, 1999.PubMed
16.
go back to reference Macario, A., What does one minute of operating room time cost? J. Clin. Anesth. 22(4):233–236, 2010.CrossRef Macario, A., What does one minute of operating room time cost? J. Clin. Anesth. 22(4):233–236, 2010.CrossRef
17.
go back to reference Van Houdenhoven, M., Van oostrum, J. M., Hans, E. W., Wullink, G., and Kazemier, G., Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling. Anesth. Analg. 105(3):707–714, 2007.CrossRef Van Houdenhoven, M., Van oostrum, J. M., Hans, E. W., Wullink, G., and Kazemier, G., Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling. Anesth. Analg. 105(3):707–714, 2007.CrossRef
18.
go back to reference Dexter, F., and Traub, R. D., How to schedule elective surgical cases into specific operating rooms to maximize the efficiency of use of operating room time. Anesth. Analg. 94(4):933–942, 2002 table of contents.CrossRef Dexter, F., and Traub, R. D., How to schedule elective surgical cases into specific operating rooms to maximize the efficiency of use of operating room time. Anesth. Analg. 94(4):933–942, 2002 table of contents.CrossRef
19.
go back to reference Dexter, F., and Ledolter, J., Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology. 103(6):1259–1167, 2005.CrossRef Dexter, F., and Ledolter, J., Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology. 103(6):1259–1167, 2005.CrossRef
Metadata
Title
Machine Learning Can Improve Estimation of Surgical Case Duration: A Pilot Study
Authors
Justin P. Tuwatananurak
Shayan Zadeh
Xinling Xu
Joshua A. Vacanti
William R. Fulton
Jesse M. Ehrenfeld
Richard D. Urman
Publication date
01-03-2019
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 3/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1160-5

Other articles of this Issue 3/2019

Journal of Medical Systems 3/2019 Go to the issue