Skip to main content
Top
Published in: Journal of Medical Systems 11/2018

01-11-2018 | Mobile & Wireless Health

Tracking Nosocomial Diseases at Individual Level with a Real-Time Indoor Positioning System

Authors: Chun-Hung Cheng, Yong-Hong Kuo, Ziye Zhou

Published in: Journal of Medical Systems | Issue 11/2018

Login to get access

Abstract

Our research is motivated by the rapidly-evolving outbreaks of rare and fatal infectious diseases, for example, the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome. In many of these outbreaks, main transmission routes were healthcare facility-associated and through person-to-person contact. While a majority of existing work on modelling of the spread of infectious diseases focuses on transmission processes at a community level, we propose a new methodology to model the outbreaks of healthcare-associated infections (HAIs), which must be considered at an individual level. Our work also contributes to a novel aspect of integrating real-time positioning technologies into the tracking and modelling framework for effective HAI outbreak control and prompt responses. Our proposed solution methodology is developed based on three key components – time-varying contact network construction, individual-level transmission tracking and HAI parameter estimation – and aims to identify the hidden health state of each patient and worker within the healthcare facility. We conduct experiments with a four-month human tracking data set collected in a hospital, which bore a big nosocomial outbreak of the 2003 SARS in Hong Kong. The evaluation results demonstrate that our framework outperforms existing epidemic models for characterizing macro-level phenomena such as the number of infected people and epidemic threshold.
Appendix
Available only for authorised users
Literature
1.
go back to reference Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J. et al., Multistate point-prevalence survey of health care–associated infections. N. Engl. J. Med. 370(13):1198–1208, 2014.CrossRef Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J. et al., Multistate point-prevalence survey of health care–associated infections. N. Engl. J. Med. 370(13):1198–1208, 2014.CrossRef
2.
go back to reference Centers for disease control and prevention. HAI data and statistics, 2016 Centers for disease control and prevention. HAI data and statistics, 2016
3.
go back to reference Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., AT Cummings, D., Alabdullatif, Z.N., Assad, M., Almulhim, A., Makhdoom, H., et al., Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 369(5):407–416, 2013.CrossRef Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., AT Cummings, D., Alabdullatif, Z.N., Assad, M., Almulhim, A., Makhdoom, H., et al., Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 369(5):407–416, 2013.CrossRef
4.
go back to reference Peiris, J.S.M., Chu, C.M., Cheng, V.C.C., Chan, K.S., Hung, I.F.N., Poon, L.L.M., Law, K.I., Tang, B.S.F., Hon, T.Y.W., Chan, C.S., et al., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772, 2003.CrossRef Peiris, J.S.M., Chu, C.M., Cheng, V.C.C., Chan, K.S., Hung, I.F.N., Poon, L.L.M., Law, K.I., Tang, B.S.F., Hon, T.Y.W., Chan, C.S., et al., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772, 2003.CrossRef
5.
go back to reference Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yee Yung, M., Leung, C.B., To, K.F., et al., A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348(20):1986–1994, 2003.CrossRef Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yee Yung, M., Leung, C.B., To, K.F., et al., A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348(20):1986–1994, 2003.CrossRef
6.
go back to reference SARS expert committee of Hong Kong SAR government. The SARS epidemic, 2003 SARS expert committee of Hong Kong SAR government. The SARS epidemic, 2003
7.
go back to reference Hung, L.S., The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med. 96(8):374–378, 2003.CrossRef Hung, L.S., The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med. 96(8):374–378, 2003.CrossRef
8.
go back to reference Cheng, C.-H., and Kuo, Y.-H., RFID Analytics for hospital ward management. Flex. Serv. Manuf. J. 28 (4):593–616, 2016.CrossRef Cheng, C.-H., and Kuo, Y.-H., RFID Analytics for hospital ward management. Flex. Serv. Manuf. J. 28 (4):593–616, 2016.CrossRef
9.
go back to reference Kermack, W.O., and McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115, pp. 700–721 The Royal Society , 1927. Kermack, W.O., and McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115, pp. 700–721 The Royal Society , 1927.
10.
go back to reference Anderson, R.M, May, R.M., and Anderson, B., Infectious diseases of humans: dynamics and control. Aust. J. Public Health 16:208–212, 1992. Anderson, R.M, May, R.M., and Anderson, B., Infectious diseases of humans: dynamics and control. Aust. J. Public Health 16:208–212, 1992.
11.
go back to reference Hethcote, H.W., The mathematics of infectious diseases. SIAM Rev. 42(4):599–653, 2000.CrossRef Hethcote, H.W., The mathematics of infectious diseases. SIAM Rev. 42(4):599–653, 2000.CrossRef
12.
go back to reference Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, E.H., and Åberg, Y., The web of human sexual contacts. Nature 411(6840):907–908, 2001.CrossRef Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, E.H., and Åberg, Y., The web of human sexual contacts. Nature 411(6840):907–908, 2001.CrossRef
13.
go back to reference Meyers, L., Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44(1):63–86, 2007.CrossRef Meyers, L., Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44(1):63–86, 2007.CrossRef
14.
go back to reference Newman, M.E.J., Spread of epidemic disease on networks. Phys. Rev. E 66(1):016128, 2002.CrossRef Newman, M.E.J., Spread of epidemic disease on networks. Phys. Rev. E 66(1):016128, 2002.CrossRef
15.
go back to reference Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., and Faloutsos, C.: Virus propagation on time-varying networks: Theory and immunization algorithms. In: Machine Learning and Knowledge Discovery in Databases, pp. 99–114. Springer, 2010. Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., and Faloutsos, C.: Virus propagation on time-varying networks: Theory and immunization algorithms. In: Machine Learning and Knowledge Discovery in Databases, pp. 99–114. Springer, 2010.
16.
go back to reference Keeling, M.J., and Eames, K.T.D., Networks and epidemic models. J. R. Soc. Interface. 2(4):295–307, 2005.CrossRef Keeling, M.J., and Eames, K.T.D., Networks and epidemic models. J. R. Soc. Interface. 2(4):295–307, 2005.CrossRef
17.
go back to reference Newman, M., Barabasi, A.-L., and Watts, D.J., The structure and dynamics of networks. New Jersey: Princeton University Press, 2006. Newman, M., Barabasi, A.-L., and Watts, D.J., The structure and dynamics of networks. New Jersey: Princeton University Press, 2006.
18.
go back to reference Keeling, M.J., and Rohani, P., Modeling infectious diseases in humans and animals. New Jersey: Princeton University Press, 2008. Keeling, M.J., and Rohani, P., Modeling infectious diseases in humans and animals. New Jersey: Princeton University Press, 2008.
19.
go back to reference Pastor-Satorras, R., Castellano, C., Mieghem, P.V., and Vespignani, A., Epidemic processes in complex networks. Rev. Mod. Phys. 87(3):925, 2015.CrossRef Pastor-Satorras, R., Castellano, C., Mieghem, P.V., and Vespignani, A., Epidemic processes in complex networks. Rev. Mod. Phys. 87(3):925, 2015.CrossRef
20.
go back to reference Nowzari, C., Preciado, V.M., and Pappas, G.J., Analysis and control of epidemics: A survey of spreading processes on complex networks. IEEE Control. Syst. 36(1):26–46, 2016.CrossRef Nowzari, C., Preciado, V.M., and Pappas, G.J., Analysis and control of epidemics: A survey of spreading processes on complex networks. IEEE Control. Syst. 36(1):26–46, 2016.CrossRef
21.
go back to reference Keeling, M.J., The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1421):859–867, 1999.CrossRef Keeling, M.J., The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1421):859–867, 1999.CrossRef
22.
go back to reference Eames, K.T.D., and Keeling, M.J., Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20):13330–13335, 2002.CrossRef Eames, K.T.D., and Keeling, M.J., Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20):13330–13335, 2002.CrossRef
23.
go back to reference Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., and Brunham, R.C., Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232(1):71–81, 2005.CrossRef Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., and Brunham, R.C., Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232(1):71–81, 2005.CrossRef
24.
go back to reference Newman, M.E.J., Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95(10):108701, 2005.CrossRef Newman, M.E.J., Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95(10):108701, 2005.CrossRef
25.
go back to reference Karrer, B., and Newman, M.E.J., Competing epidemics on complex networks. Phys. Rev. E 84(3):036106, 2011.CrossRef Karrer, B., and Newman, M.E.J., Competing epidemics on complex networks. Phys. Rev. E 84(3):036106, 2011.CrossRef
26.
go back to reference Volz, E., SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56(3):293–310, 2008.CrossRef Volz, E., SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56(3):293–310, 2008.CrossRef
27.
go back to reference Larson, R.C., Simple models of influenza progression within a heterogeneous population. Oper. Res. 55(3): 399–412, 2007.CrossRef Larson, R.C., Simple models of influenza progression within a heterogeneous population. Oper. Res. 55(3): 399–412, 2007.CrossRef
28.
go back to reference Teytelman, A., and Larson, R.C., Modeling influenza progression within a continuous-attribute heterogeneous population. Eur. J. Oper. Res. 220(1):238–250, 2012.CrossRef Teytelman, A., and Larson, R.C., Modeling influenza progression within a continuous-attribute heterogeneous population. Eur. J. Oper. Res. 220(1):238–250, 2012.CrossRef
29.
go back to reference Yaesoubi, R., and Cohen, T., Generalized markov models of infectious disease spread: A novel framework for developing dynamic health policies. Eur. J. Oper. Res. 215(3):679–687, 2011.PubMedPubMedCentral Yaesoubi, R., and Cohen, T., Generalized markov models of infectious disease spread: A novel framework for developing dynamic health policies. Eur. J. Oper. Res. 215(3):679–687, 2011.PubMedPubMedCentral
30.
go back to reference Bansal, S., Grenfell, B.T., and Meyers, L.A., When individual behaviour matters: homogeneous and network models in epidemiology. J. R. Soc. Interface. 4(16):879–891, 2007.CrossRef Bansal, S., Grenfell, B.T., and Meyers, L.A., When individual behaviour matters: homogeneous and network models in epidemiology. J. R. Soc. Interface. 4(16):879–891, 2007.CrossRef
31.
go back to reference Meyers, L.A., Newman, M.E.J., Martin, M., and Schrag, S., Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks. Emerg. Infect. Dis. 9(2):204–210, 2003.CrossRef Meyers, L.A., Newman, M.E.J., Martin, M., and Schrag, S., Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks. Emerg. Infect. Dis. 9(2):204–210, 2003.CrossRef
32.
go back to reference Liljeros, F., Giesecke, J., and Holme, P., The contact network of inpatients in a regional healthcare system. a longitudinal case study. Math. Popul. Stud. 14(4):269–284, 2007.CrossRef Liljeros, F., Giesecke, J., and Holme, P., The contact network of inpatients in a regional healthcare system. a longitudinal case study. Math. Popul. Stud. 14(4):269–284, 2007.CrossRef
33.
go back to reference Ueno, T., and Masuda, N., Controlling nosocomial infection based on structure of hospital social networks. J. Theor. Biol. 254(3):655–666, 2008.CrossRef Ueno, T., and Masuda, N., Controlling nosocomial infection based on structure of hospital social networks. J. Theor. Biol. 254(3):655–666, 2008.CrossRef
34.
go back to reference Curtis, D.E., Hlady, C.S., Pemmaraju, S.V., Polgreen, P.M., and Segre, A.M.: Modeling and estimating the spatial distribution of healthcare workers. In: Proceedings of the 1st ACM International Health Informatics Symposium, pages 287–296. ACM , 2010. Curtis, D.E., Hlady, C.S., Pemmaraju, S.V., Polgreen, P.M., and Segre, A.M.: Modeling and estimating the spatial distribution of healthcare workers. In: Proceedings of the 1st ACM International Health Informatics Symposium, pages 287–296. ACM , 2010.
35.
go back to reference Dong, W., Pentl, Y., and Heller, K.A.: Graph-coupled HMMs for modeling the spread of infection. In: Proceedings of the 30th International Conference on Machine Learning. Citeseer , 2013. Dong, W., Pentl, Y., and Heller, K.A.: Graph-coupled HMMs for modeling the spread of infection. In: Proceedings of the 30th International Conference on Machine Learning. Citeseer , 2013.
36.
go back to reference Camci, F., and Chinnam, R.B., Health-state estimation and prognostics in machining processes. IEEE Trans. Autom. Sci. Eng. 7(3):581–597, 2010.CrossRef Camci, F., and Chinnam, R.B., Health-state estimation and prognostics in machining processes. IEEE Trans. Autom. Sci. Eng. 7(3):581–597, 2010.CrossRef
37.
go back to reference Feng, L., Wang, H., Si, X., and Zou, H., A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process. IEEE Trans. Autom. Sci. Eng. 10(4):1072–1086, 2013.CrossRef Feng, L., Wang, H., Si, X., and Zou, H., A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process. IEEE Trans. Autom. Sci. Eng. 10(4):1072–1086, 2013.CrossRef
38.
go back to reference Lawrence, R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2):257–286, 1989.CrossRef Lawrence, R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2):257–286, 1989.CrossRef
39.
go back to reference Kitagawa, G., Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82(400): 1032–1041, 1987. Kitagawa, G., Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82(400): 1032–1041, 1987.
40.
go back to reference Doucet, A., Godsill, S., and Andrieu, C., On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3):197–208, 2000.CrossRef Doucet, A., Godsill, S., and Andrieu, C., On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3):197–208, 2000.CrossRef
41.
go back to reference Baum, L.E., Eagon, J.A., et al., An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 73(3):360–363, 1967.CrossRef Baum, L.E., Eagon, J.A., et al., An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Am. Math. Soc. 73(3):360–363, 1967.CrossRef
42.
go back to reference Baum, L.E., Petrie, T., Soules, G., and Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat.,164–171, 1970.CrossRef Baum, L.E., Petrie, T., Soules, G., and Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat.,164–171, 1970.CrossRef
Metadata
Title
Tracking Nosocomial Diseases at Individual Level with a Real-Time Indoor Positioning System
Authors
Chun-Hung Cheng
Yong-Hong Kuo
Ziye Zhou
Publication date
01-11-2018
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 11/2018
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1085-4

Other articles of this Issue 11/2018

Journal of Medical Systems 11/2018 Go to the issue