Skip to main content
Top
Published in: Journal of Medical Systems 7/2016

01-07-2016 | Systems-Level Quality Improvement

HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images

Authors: Qingzhu Wang, Wanjun Kang, Haihui Hu, Bin Wang

Published in: Journal of Medical Systems | Issue 7/2016

Login to get access

Abstract

An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.
Literature
1.
go back to reference Cao, P., Yang, J. Z., Li, W., et al., Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Comput Med Imaging Graph 38:137–150, 2014.PubMedCrossRef Cao, P., Yang, J. Z., Li, W., et al., Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Comput Med Imaging Graph 38:137–150, 2014.PubMedCrossRef
2.
go back to reference Tasci, E., and Ugur, A., Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs. J Med Syst 39(46):1–13, 2015. Tasci, E., and Ugur, A., Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs. J Med Syst 39(46):1–13, 2015.
3.
go back to reference Singh, S. P., and Urooi, S., An improved CAD system for breast cancer diagnosis based on generalized pseudo-Zernike moment and Ada-DEWNN classifier. J Med Syst 40(4):1–13, 2016.CrossRef Singh, S. P., and Urooi, S., An improved CAD system for breast cancer diagnosis based on generalized pseudo-Zernike moment and Ada-DEWNN classifier. J Med Syst 40(4):1–13, 2016.CrossRef
4.
go back to reference Cetin, M., and Iskurt, A., An automatic 3-D reconstruction of coronary arteries by stereopsis. J Med Syst 40(4):1–11, 2016.CrossRef Cetin, M., and Iskurt, A., An automatic 3-D reconstruction of coronary arteries by stereopsis. J Med Syst 40(4):1–11, 2016.CrossRef
5.
go back to reference Chen, X. J., Udupa, J. K., Bagci, U., et al., Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046, 2012.PubMedCrossRef Chen, X. J., Udupa, J. K., Bagci, U., et al., Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046, 2012.PubMedCrossRef
6.
go back to reference Dawoud, A., Lung segmentation in chest radiographs by fusing shape information in iterative thresholding. IET Comput Vis 5(3):185–190, 2011.CrossRef Dawoud, A., Lung segmentation in chest radiographs by fusing shape information in iterative thresholding. IET Comput Vis 5(3):185–190, 2011.CrossRef
7.
go back to reference Noor, N. M., Than, J. C. M., Rijal, O. M., et al., Automatic lung segmentation using control feedback system: Morphology and texture paradigm. J Med Syst 39(3):1–18, 2015.CrossRef Noor, N. M., Than, J. C. M., Rijal, O. M., et al., Automatic lung segmentation using control feedback system: Morphology and texture paradigm. J Med Syst 39(3):1–18, 2015.CrossRef
8.
go back to reference Bae, K. T., Kim, J. S., Na, Y. H., et al., Pulmonary nodules: Automated detection on CT images with morphologic matching algorithm-preliminary results [J]. Radiology 236:286–294, 2005.PubMedCrossRef Bae, K. T., Kim, J. S., Na, Y. H., et al., Pulmonary nodules: Automated detection on CT images with morphologic matching algorithm-preliminary results [J]. Radiology 236:286–294, 2005.PubMedCrossRef
9.
go back to reference Li, B., and Acton, S. T., Automatic active model initialization via Poisson inverse gradient. IEEE Trans Image Process 17(8):1406–1419, 2008.PubMedCrossRef Li, B., and Acton, S. T., Automatic active model initialization via Poisson inverse gradient. IEEE Trans Image Process 17(8):1406–1419, 2008.PubMedCrossRef
10.
go back to reference Norliza, M. N., Joel, C. M. T., and Omar, M. R., Automatic lung segmentation using control feedback system: Morphology and texture paradigm. J Med Syst 39(22):1–18, 2015. Norliza, M. N., Joel, C. M. T., and Omar, M. R., Automatic lung segmentation using control feedback system: Morphology and texture paradigm. J Med Syst 39(22):1–18, 2015.
11.
go back to reference Pu, J., Roos, C. A. Y., Napel, S., et al., Adaptive border marching algorithm : Automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32(6):452–462, 2008.PubMedPubMedCentralCrossRef Pu, J., Roos, C. A. Y., Napel, S., et al., Adaptive border marching algorithm : Automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32(6):452–462, 2008.PubMedPubMedCentralCrossRef
12.
go back to reference Wang, J., Li, Q., Li, F., et al., Automated segmentation of lungs with severe interstitial lung disease in CT. Med Physics 36(1):4592–4599, 2009.CrossRef Wang, J., Li, Q., Li, F., et al., Automated segmentation of lungs with severe interstitial lung disease in CT. Med Physics 36(1):4592–4599, 2009.CrossRef
13.
go back to reference Rikxoort, E. M. V., Hoop, B. D., Viergever, M. A., et al., Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med Phys 36:2934–2947, 2009.PubMedCrossRef Rikxoort, E. M. V., Hoop, B. D., Viergever, M. A., et al., Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med Phys 36:2934–2947, 2009.PubMedCrossRef
14.
go back to reference Rikxoort, E. M. V., and Ginneken, B. V., Automated segmentation of pulmonary structures in thoracic computed tomography scans: A review. Phys Med Biol 58(17):R187, 2013.PubMedCrossRef Rikxoort, E. M. V., and Ginneken, B. V., Automated segmentation of pulmonary structures in thoracic computed tomography scans: A review. Phys Med Biol 58(17):R187, 2013.PubMedCrossRef
15.
go back to reference Xu, T., Mandal, M., Long, R., et al., An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Comput Med Imaging Graph 36(6):452–463, 2012.PubMedCrossRef Xu, T., Mandal, M., Long, R., et al., An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Comput Med Imaging Graph 36(6):452–463, 2012.PubMedCrossRef
16.
go back to reference Liu, J., and Udupa, J., Oriented active shape models. IEEE Trans Med Imaging 28(4):571–584, 2009.PubMedCrossRef Liu, J., and Udupa, J., Oriented active shape models. IEEE Trans Med Imaging 28(4):571–584, 2009.PubMedCrossRef
17.
go back to reference Sun, S. H., Bauer, C., and Beichel, R., Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging 31(2):449–460, 2012.PubMedCrossRef Sun, S. H., Bauer, C., and Beichel, R., Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Trans Med Imaging 31(2):449–460, 2012.PubMedCrossRef
18.
go back to reference Catalina, T. G., Federico, M. S., Constantine, B., et al., Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation. Phys Med Biol 57:4155–4174, 2012.CrossRef Catalina, T. G., Federico, M. S., Constantine, B., et al., Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation. Phys Med Biol 57:4155–4174, 2012.CrossRef
19.
go back to reference Steven, C. M., Johan, G. B., Boudewijn, P. F. L., et al., 3-D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178, 2002.CrossRef Steven, C. M., Johan, G. B., Boudewijn, P. F. L., et al., 3-D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178, 2002.CrossRef
20.
go back to reference Larsen, R., Stegmann, M., Darkner, S., et al., Texture enhanced appearance models. Comput Vis Image Underst 106(1):20–30, 2007.CrossRef Larsen, R., Stegmann, M., Darkner, S., et al., Texture enhanced appearance models. Comput Vis Image Underst 106(1):20–30, 2007.CrossRef
21.
go back to reference Baka, N., Milles, J., Hendriks, E., et al., Segmentation of myocardial perfusion MR sequences with multi-band active appearance models driven by spatial and temporal features. Proc SPIE Med Imaging 6914:1–10, 2008. Baka, N., Milles, J., Hendriks, E., et al., Segmentation of myocardial perfusion MR sequences with multi-band active appearance models driven by spatial and temporal features. Proc SPIE Med Imaging 6914:1–10, 2008.
22.
go back to reference Toth, R., and Madabhushi, A., Multifeature landmark-free active appearance models: Application to prostate MRI segmentation. IEEE Trans Med Imaging 31(8):1638–1650, 2012.PubMedCrossRef Toth, R., and Madabhushi, A., Multifeature landmark-free active appearance models: Application to prostate MRI segmentation. IEEE Trans Med Imaging 31(8):1638–1650, 2012.PubMedCrossRef
23.
go back to reference Toth, R., Ribault, J., Gentile, J., et al., Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput Vis Image Underst 117:1051–1060, 2013.PubMedPubMedCentralCrossRef Toth, R., Ribault, J., Gentile, J., et al., Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput Vis Image Underst 117:1051–1060, 2013.PubMedPubMedCentralCrossRef
24.
go back to reference Cootes, T. F., Taylor, C. J., Cooper, D. H., et al., Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59, 1995.CrossRef Cootes, T. F., Taylor, C. J., Cooper, D. H., et al., Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59, 1995.CrossRef
25.
go back to reference Cootes, T. F., Edwards, G. J., and Taylor, C. J., Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685, 2001.CrossRef Cootes, T. F., Edwards, G. J., and Taylor, C. J., Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685, 2001.CrossRef
26.
go back to reference Vasilescu M. A. O., Terzopoulos D. Multilinear Subspace Analysis of Image Ensembles, CVPR. 2003: 93–99 Vasilescu M. A. O., Terzopoulos D. Multilinear Subspace Analysis of Image Ensembles, CVPR. 2003: 93–99
27.
go back to reference Lu, H. P., Konstantinos, N. P., and Anastasios, N. V., MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw 19(1):18–39, 2008.PubMedCrossRef Lu, H. P., Konstantinos, N. P., and Anastasios, N. V., MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw 19(1):18–39, 2008.PubMedCrossRef
28.
go back to reference Nie, F., Xiang, S., Song, Y., et al., Extracting the optimal dimensionality for local tensor discriminant analysis. Pattern Recogn 42(1):105–114, 2009.CrossRef Nie, F., Xiang, S., Song, Y., et al., Extracting the optimal dimensionality for local tensor discriminant analysis. Pattern Recogn 42(1):105–114, 2009.CrossRef
29.
go back to reference Tao, D., Li, X., Wu, X., et al., Supervised tensor learning [J]. Knowl Inf Syst 13(1):1–42, 2007.CrossRef Tao, D., Li, X., Wu, X., et al., Supervised tensor learning [J]. Knowl Inf Syst 13(1):1–42, 2007.CrossRef
30.
go back to reference Tao, D., Li, X., Wu, X., et al., Tensor rank One discriminant analysis-a convergent method for discriminative multilinear subspace selection. Neurocomputing 7110:1866–1882, 2008.CrossRef Tao, D., Li, X., Wu, X., et al., Tensor rank One discriminant analysis-a convergent method for discriminative multilinear subspace selection. Neurocomputing 7110:1866–1882, 2008.CrossRef
31.
go back to reference Wang, Q. Z., Zhu, W. C., and Wang, B., Three-dimensional SVM with latent variable: Application for detection of lung lesions in CT images. J Med Syst 39(1):1–7, 2015. Wang, Q. Z., Zhu, W. C., and Wang, B., Three-dimensional SVM with latent variable: Application for detection of lung lesions in CT images. J Med Syst 39(1):1–7, 2015.
32.
go back to reference Hou, C. P., Nie, F. P., Zhang, C. S., et al., Multiple rank multi-linear SVM for matrix date classification. Pattern Recogn 47:454–469, 2014.CrossRef Hou, C. P., Nie, F. P., Zhang, C. S., et al., Multiple rank multi-linear SVM for matrix date classification. Pattern Recogn 47:454–469, 2014.CrossRef
33.
go back to reference Feng Z. H., Kittler J., Christmas W., et al. Automatic Face Annotation by Multilinear AAM with Missing Values. 21st International Conference on Pattern Recognition. 2012:11–15 Feng Z. H., Kittler J., Christmas W., et al. Automatic Face Annotation by Multilinear AAM with Missing Values. 21st International Conference on Pattern Recognition. 2012:11–15
34.
go back to reference Lieven, D. L., et al., A multilinear singular value decomposition. Siam J Matrix Anal Appl 21(4):1253–1278, 2000.CrossRef Lieven, D. L., et al., A multilinear singular value decomposition. Siam J Matrix Anal Appl 21(4):1253–1278, 2000.CrossRef
35.
go back to reference Vannieuwenhoven, N., et al., A New truncation strategy for the higher-order singular value decomposition. Siam J Sci Comput 34(2):1027–1052, 2012.CrossRef Vannieuwenhoven, N., et al., A New truncation strategy for the higher-order singular value decomposition. Siam J Sci Comput 34(2):1027–1052, 2012.CrossRef
36.
go back to reference Heimann, T., Ginneken, B. V., Styner, M. A., et al., Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265, 2009.PubMedCrossRef Heimann, T., Ginneken, B. V., Styner, M. A., et al., Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265, 2009.PubMedCrossRef
Metadata
Title
HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images
Authors
Qingzhu Wang
Wanjun Kang
Haihui Hu
Bin Wang
Publication date
01-07-2016
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 7/2016
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0535-0

Other articles of this Issue 7/2016

Journal of Medical Systems 7/2016 Go to the issue