Skip to main content
Top
Published in: Journal of Medical Systems 10/2015

01-10-2015 | Systems-Level Quality Improvement

A Semi-Automatic Coronary Artery Segmentation Framework Using Mechanical Simulation

Authors: Ken Cai, Rongqian Yang, Lihua Li, Shanxing Ou, Yuke Chen, Jianhong Dou

Published in: Journal of Medical Systems | Issue 10/2015

Login to get access

Abstract

CVD (cardiovascular disease) is one of the biggest threats to human beings nowadays. An early and quantitative diagnosis of CVD is important in extending lifespan and improving people’s life quality. Coronary artery stenosis can prevent CVD. To diagnose the degree of stenosis, the inner diameter of coronary artery needs to be measured. To achieve such measurement, the coronary artery is segmented by using a method that is based on morphology and the continuity between computed tomography image slices. A centerline extraction method based on mechanical simulation is proposed. This centerline extraction method can figure out a basic framework of the coronary artery by simulating pixel dots of the artery image into mass points. Such mass points have tensile forces, with which the outer pixel dots can be drawn to the center. Subsequently, the centerline of the coronary artery can be outlined by using the local line-fitting method. Finally, the nearest point method is adopted to measure the inner diameter. Experimental results showed that the methods proposed in this paper can precisely extract the centerline of the coronary artery and can accurately measure its inner diameter, thereby providing a basis for quantitative diagnosis of coronary artery stenosis.
Literature
1.
go back to reference Barbier, P., Solomon, S. B., Schiller, N. B., and Glantz, S. A., Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation 100(4):427–436, 1999.CrossRefPubMed Barbier, P., Solomon, S. B., Schiller, N. B., and Glantz, S. A., Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation 100(4):427–436, 1999.CrossRefPubMed
2.
go back to reference Rossi, A., Cicoira, M., Zanolla, L., Sandrini, R., Golia, G., Zardini, P., and Enriquez-Sarano, M., Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 40(8):1425–1430, 2002.CrossRefPubMed Rossi, A., Cicoira, M., Zanolla, L., Sandrini, R., Golia, G., Zardini, P., and Enriquez-Sarano, M., Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 40(8):1425–1430, 2002.CrossRefPubMed
3.
go back to reference Pritchett, A. M., Mahoney, D. W., Jacobsen, S. J., Rodeheffer, R. J., Karon, B. L., and Redfield, M. M., Diastolic dysfunction and left atrial volume: a population-based study. J. Am. Coll. Cardiol. 45(1):87–92, 2005.CrossRefPubMed Pritchett, A. M., Mahoney, D. W., Jacobsen, S. J., Rodeheffer, R. J., Karon, B. L., and Redfield, M. M., Diastolic dysfunction and left atrial volume: a population-based study. J. Am. Coll. Cardiol. 45(1):87–92, 2005.CrossRefPubMed
4.
go back to reference Mueller, D., and Maeder, A., Robust semi-automated path extraction for visualising stenosis of the coronary arteries. Comput. Med. Imaging Graph. 32(6):463–475, 2008.CrossRefPubMed Mueller, D., and Maeder, A., Robust semi-automated path extraction for visualising stenosis of the coronary arteries. Comput. Med. Imaging Graph. 32(6):463–475, 2008.CrossRefPubMed
5.
go back to reference Hernandez-Vela, A., Gatta, C., Escalera, S., Igual, L., Martin-Yuste, V., Sabate, M., and Radeva, P., Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies. IEEE Trans. Inf. Technol. Biomed. 16(6):1332–1340, 2012.CrossRefPubMed Hernandez-Vela, A., Gatta, C., Escalera, S., Igual, L., Martin-Yuste, V., Sabate, M., and Radeva, P., Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies. IEEE Trans. Inf. Technol. Biomed. 16(6):1332–1340, 2012.CrossRefPubMed
6.
go back to reference Boskamp, T., Rinck, D., Link, F., Kümmerlen, B., Stamm, G., and Mildenberger, P., New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imageing data sets. RadioGraphics 24(1):287–297, 2004.CrossRefPubMed Boskamp, T., Rinck, D., Link, F., Kümmerlen, B., Stamm, G., and Mildenberger, P., New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imageing data sets. RadioGraphics 24(1):287–297, 2004.CrossRefPubMed
7.
go back to reference Hennemuth, A., Bock, S., Boskamp, T., Fritz, D., Kühnel, C., Rinck, D., Scheuering, M., and Peitgen, H. O., One-click coronary tree segmentation in CT angiographic images. Int. Congr. Ser. 1281(1):317–321, 2005.CrossRef Hennemuth, A., Bock, S., Boskamp, T., Fritz, D., Kühnel, C., Rinck, D., Scheuering, M., and Peitgen, H. O., One-click coronary tree segmentation in CT angiographic images. Int. Congr. Ser. 1281(1):317–321, 2005.CrossRef
8.
go back to reference Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., and Germain, P., 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Graph. 34(5):377–387, 2010.CrossRefPubMed Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., and Germain, P., 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Graph. 34(5):377–387, 2010.CrossRefPubMed
9.
go back to reference Shang, Y., Deklerck, R., Nyssen, E., Markova, A., de Mey, J., Yang, X., and Sun, K., Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng. 58(4):1023–1032, 2011.CrossRefPubMed Shang, Y., Deklerck, R., Nyssen, E., Markova, A., de Mey, J., Yang, X., and Sun, K., Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng. 58(4):1023–1032, 2011.CrossRefPubMed
10.
go back to reference Sanz-Requena, R., Moratal, D., García-Sánchez, D. R., Bodí, V., Rieta, J. J., and Sanchis, J. M., Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Comput. Med. Imaging Graph. 31(2):71–80, 2007.CrossRefPubMed Sanz-Requena, R., Moratal, D., García-Sánchez, D. R., Bodí, V., Rieta, J. J., and Sanchis, J. M., Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Comput. Med. Imaging Graph. 31(2):71–80, 2007.CrossRefPubMed
11.
go back to reference Schmid, V. J., Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI. IEEE Trans. Med. Imaging 30(7):1305–1313, 2011.CrossRefPubMed Schmid, V. J., Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI. IEEE Trans. Med. Imaging 30(7):1305–1313, 2011.CrossRefPubMed
12.
go back to reference Friman, O., Hindennach, M., Kühnel, C., and Peitgen, H. O., Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2):160–171, 2010.CrossRefPubMed Friman, O., Hindennach, M., Kühnel, C., and Peitgen, H. O., Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2):160–171, 2010.CrossRefPubMed
13.
go back to reference Shang, Y., Yang, X., Zhu, L., Deklerck, R., and Nyssen, E., Region competition based active contour for medical object extraction. Comput. Med. Imaging Graph. 32(2):109–117, 2008.CrossRefPubMed Shang, Y., Yang, X., Zhu, L., Deklerck, R., and Nyssen, E., Region competition based active contour for medical object extraction. Comput. Med. Imaging Graph. 32(2):109–117, 2008.CrossRefPubMed
14.
go back to reference Lee, J., Beighley, P., Ritman, E., and Smith, N., Automatic segmentation of 3D micro-CT coronary vascular images. Med. Image Anal. 11(6):630–647, 2007.CrossRefPubMed Lee, J., Beighley, P., Ritman, E., and Smith, N., Automatic segmentation of 3D micro-CT coronary vascular images. Med. Image Anal. 11(6):630–647, 2007.CrossRefPubMed
15.
go back to reference Mazonakis, M., Grinias, E., Pagonidis, K., Tziritas, G., and Damilakis, J., Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images. Phys. Med. Biol. 55(4):1127–1140, 2010.CrossRefPubMed Mazonakis, M., Grinias, E., Pagonidis, K., Tziritas, G., and Damilakis, J., Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images. Phys. Med. Biol. 55(4):1127–1140, 2010.CrossRefPubMed
16.
go back to reference Bai, W., Shi, W., O’Regan, D. P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N. S., and Rueckert, D., A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7):1302–1315, 2013.CrossRefPubMed Bai, W., Shi, W., O’Regan, D. P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N. S., and Rueckert, D., A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7):1302–1315, 2013.CrossRefPubMed
17.
go back to reference Aylward, S. R., and Bullitt, E., Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2):61–75, 2002.CrossRefPubMed Aylward, S. R., and Bullitt, E., Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2):61–75, 2002.CrossRefPubMed
18.
go back to reference Chen K., Zhang Y., Pohl K., Syeda-Mahmood T., Song Z., and Wong S. T., Coronary artery segmentation using geometric moments based tracking and snake-driven refinement, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3133–3137, 2010. Chen K., Zhang Y., Pohl K., Syeda-Mahmood T., Song Z., and Wong S. T., Coronary artery segmentation using geometric moments based tracking and snake-driven refinement, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3133–3137, 2010.
19.
go back to reference Chen, Z., and Molloi, S., Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 27(6):469–479, 2003.CrossRefPubMed Chen, Z., and Molloi, S., Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 27(6):469–479, 2003.CrossRefPubMed
20.
go back to reference Li, L. H., Huang, Y. S., Yang, R. Q., and Wu, X. M., Segmentation of coronary artery from dual-source CT images. Chin. J. Tissue Eng. Res. 16(39):7298–7301, 2012. Li, L. H., Huang, Y. S., Yang, R. Q., and Wu, X. M., Segmentation of coronary artery from dual-source CT images. Chin. J. Tissue Eng. Res. 16(39):7298–7301, 2012.
Metadata
Title
A Semi-Automatic Coronary Artery Segmentation Framework Using Mechanical Simulation
Authors
Ken Cai
Rongqian Yang
Lihua Li
Shanxing Ou
Yuke Chen
Jianhong Dou
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 10/2015
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-015-0329-9

Other articles of this Issue 10/2015

Journal of Medical Systems 10/2015 Go to the issue