Skip to main content
Top
Published in: Journal of Medical Systems 10/2015

01-10-2015 | Systems-Level Quality Improvement

A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors

Authors: M. Zarinbal, M. H. Fazel Zarandi, I. B. Turksen, M. Izadi

Published in: Journal of Medical Systems | Issue 10/2015

Login to get access

Abstract

The focus of this paper is diagnosing and differentiating Astrocytomas in MRI scans by developing an interval Type-2 fuzzy automated tumor detection system. This system consists of three modules: working memory, knowledge base, and inference engine. An image processing method with three steps of preprocessing, segmentation and feature extraction, and approximate reasoning is used in inference engine module to enhance the quality of MRI scans, segment them into desired regions, extract the required features, and finally diagnose and differentiate Astrocytomas. However, brain tumors have different characteristics in different planes, so considering one plane of patient’s MRI scan may cause inaccurate results. Therefore, in the developed system, several consecutive planes are processed. The performance of this system is evaluated using 95 MRI scans and the results show good improvement in diagnosing and differentiating Astrocytomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Turkington, C., The encyclopedia of the brain and brain disorders. Facts On File, Inc., New York, 2002. Turkington, C., The encyclopedia of the brain and brain disorders. Facts On File, Inc., New York, 2002.
2.
go back to reference Ali-osman, F. (Ed.), Brain tumors. Humana Press Inc., Totowa, 2005. Ali-osman, F. (Ed.), Brain tumors. Humana Press Inc., Totowa, 2005.
3.
go back to reference Baert, A. L., and Sartor, K., MR imaging in white matter diseases of the brain and spinal cord. Springer-Verlag, Berlin, 2005. Baert, A. L., and Sartor, K., MR imaging in white matter diseases of the brain and spinal cord. Springer-Verlag, Berlin, 2005.
4.
go back to reference Brandt, T., Dichgans, J. eds: Neurological disorders: course and treatment. Academic Press (2003). Brandt, T., Dichgans, J. eds: Neurological disorders: course and treatment. Academic Press (2003).
5.
go back to reference Kwon, K.-C., Lim, Y.-T., Kim, C.-H., Kim, N., Park, C., Yoo, K.-H., Son, S.-H., and Jeon, S.-I., Microwave tomography analysis system for breast tumor detection. J. Med. Syst. 36:1757–1767, 2012.CrossRefPubMed Kwon, K.-C., Lim, Y.-T., Kim, C.-H., Kim, N., Park, C., Yoo, K.-H., Son, S.-H., and Jeon, S.-I., Microwave tomography analysis system for breast tumor detection. J. Med. Syst. 36:1757–1767, 2012.CrossRefPubMed
6.
go back to reference Boquete, L., Ortega, S., Miguel-Jiménez, J. M., Rodríguez-Ascariz, J. M., and Blanco, R., Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. 36:103–111, 2012.CrossRefPubMed Boquete, L., Ortega, S., Miguel-Jiménez, J. M., Rodríguez-Ascariz, J. M., and Blanco, R., Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J. Med. Syst. 36:103–111, 2012.CrossRefPubMed
7.
go back to reference Francis, S. V., Sasikala, M., and Saranya, S., Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst. 38:1–9, 2014.CrossRef Francis, S. V., Sasikala, M., and Saranya, S., Detection of breast abnormality from thermograms using curvelet transform based feature extraction. J. Med. Syst. 38:1–9, 2014.CrossRef
8.
go back to reference Fazel Zarandi, M. H., Zarinbal, M., and Izadi, M., Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. Appl. Soft Comput. 11:285–294, 2011.CrossRef Fazel Zarandi, M. H., Zarinbal, M., and Izadi, M., Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. Appl. Soft Comput. 11:285–294, 2011.CrossRef
9.
go back to reference Vadivel, A., and Surendiran, B., A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput. Biol. Med. 43:259–267, 2013.CrossRefPubMed Vadivel, A., and Surendiran, B., A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput. Biol. Med. 43:259–267, 2013.CrossRefPubMed
10.
go back to reference Harati, V., Khayati, R., and Farzan, A., Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol. Med. 41:483–492, 2011.CrossRefPubMed Harati, V., Khayati, R., and Farzan, A., Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol. Med. 41:483–492, 2011.CrossRefPubMed
11.
go back to reference Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. (2014). Miranda, G.H.B., Felipe, J.C.: Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. (2014).
12.
go back to reference T. Moritani, S. Ekholm, P.-L.Westesson: Diffusion-weighted MR imaging of the brain. Springer-Verlag (2005). T. Moritani, S. Ekholm, P.-L.Westesson: Diffusion-weighted MR imaging of the brain. Springer-Verlag (2005).
13.
go back to reference Zarinbal, M., Fazel Zarandi, M.H.: Type-2 fuzzy image enhancement: Fuzzy rule based approach. J. Intell. Fuzzy Syst. (2014). Zarinbal, M., Fazel Zarandi, M.H.: Type-2 fuzzy image enhancement: Fuzzy rule based approach. J. Intell. Fuzzy Syst. (2014).
14.
go back to reference Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., and Davatzikos, C., Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62:1609–18, 2009.PubMedCentralCrossRefPubMed Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., and Davatzikos, C., Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62:1609–18, 2009.PubMedCentralCrossRefPubMed
15.
go back to reference El-Dahshan, E.-S. a., Mohsen, H. M., Revett, K., and Salem, A.-B. M., Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41:5526–5545, 2014.CrossRef El-Dahshan, E.-S. a., Mohsen, H. M., Revett, K., and Salem, A.-B. M., Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41:5526–5545, 2014.CrossRef
16.
go back to reference Meyer-base, A.: pattern recognition for medical imaging. Academic Press (2004). Meyer-base, A.: pattern recognition for medical imaging. Academic Press (2004).
17.
go back to reference Zarinbal, M., Fazel Zarandi, M. H., and Turksen, I., Relative entropy fuzzy c-means clustering. Inf. Sci. 260:74–97, 2014.CrossRef Zarinbal, M., Fazel Zarandi, M. H., and Turksen, I., Relative entropy fuzzy c-means clustering. Inf. Sci. 260:74–97, 2014.CrossRef
18.
go back to reference Mendel, J. M., and John, R. I. B., Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10:117–127, 2002.CrossRef Mendel, J. M., and John, R. I. B., Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10:117–127, 2002.CrossRef
19.
go back to reference Melin, P., Mendoza, O., and Castillo, O., Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. Syst. Hum. 41:1001–1012, 2011.CrossRef Melin, P., Mendoza, O., and Castillo, O., Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. Syst. Hum. 41:1001–1012, 2011.CrossRef
20.
go back to reference Palanivelu, M., and Duraisamy, M., Color textured image segmentation using ICICM - interval type-2 fuzzy C-means clustering hybrid approach. Eng. J. 16:115–126, 2012.CrossRef Palanivelu, M., and Duraisamy, M., Color textured image segmentation using ICICM - interval type-2 fuzzy C-means clustering hybrid approach. Eng. J. 16:115–126, 2012.CrossRef
21.
go back to reference Wang, W., Liu, X., and Qin, Y., Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30:121–128, 2012.CrossRef Wang, W., Liu, X., and Qin, Y., Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30:121–128, 2012.CrossRef
22.
go back to reference Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with choquet integral in modular neural networks. in: recent advances on hybrid approaches for designing intelligent systems. pp. 437–449. Springer (2014). Martínez, G.E., Melin, P., Mendoza, O.D., Castillo, O.: Face recognition with choquet integral in modular neural networks. in: recent advances on hybrid approaches for designing intelligent systems. pp. 437–449. Springer (2014).
23.
go back to reference Barnett, G. H. (Ed.), High-grade gliomas: diagnosis and treatment. Humana Press, Totowa, 2007. Barnett, G. H. (Ed.), High-grade gliomas: diagnosis and treatment. Humana Press, Totowa, 2007.
24.
go back to reference Henson, J. W., Gaviani, P., and Gonzalez, R. G., MRI in treatment of adult gliomas. Lancet Oncol. 6:167–175, 2005.CrossRefPubMed Henson, J. W., Gaviani, P., and Gonzalez, R. G., MRI in treatment of adult gliomas. Lancet Oncol. 6:167–175, 2005.CrossRefPubMed
25.
go back to reference Bovik, A. ed: Handbook of image and video processing. Academic Press (2000). Bovik, A. ed: Handbook of image and video processing. Academic Press (2000).
26.
go back to reference Parker, J.R.: Algorithms for image processing and computer vision. Wiley Publishing, Inc. (2011). Parker, J.R.: Algorithms for image processing and computer vision. Wiley Publishing, Inc. (2011).
27.
go back to reference Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., and de la Cruz, J. M., A new expert system for greenness identification in agricultural images. Expert Syst. Appl. 40:2275–2286, 2013.CrossRef Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., and de la Cruz, J. M., A new expert system for greenness identification in agricultural images. Expert Syst. Appl. 40:2275–2286, 2013.CrossRef
28.
go back to reference Ericeira, D. R., Silva, A. C., de Paiva, A. C., and Gattass, M., Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput. Biol. Med. 43:987–999, 2013.CrossRefPubMed Ericeira, D. R., Silva, A. C., de Paiva, A. C., and Gattass, M., Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput. Biol. Med. 43:987–999, 2013.CrossRefPubMed
29.
go back to reference Wu, Q., Pang, X., and Han, Z., Fuzzy automata system with application to target recognition based on image processing. Comput. Math. Appl. 61:1267–1277, 2011.CrossRef Wu, Q., Pang, X., and Han, Z., Fuzzy automata system with application to target recognition based on image processing. Comput. Math. Appl. 61:1267–1277, 2011.CrossRef
30.
go back to reference Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., and Pajares, G., Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst. Appl. 40:656–664, 2013.CrossRef Guerrero, J. M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., and Pajares, G., Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst. Appl. 40:656–664, 2013.CrossRef
31.
go back to reference Borges Sampaio, W., Moraes Diniz, E., Corrêa Silva, A., Cardoso De Paiva, A., and Gattass, M., Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41:653–664, 2011.CrossRef Borges Sampaio, W., Moraes Diniz, E., Corrêa Silva, A., Cardoso De Paiva, A., and Gattass, M., Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Comput. Biol. Med. 41:653–664, 2011.CrossRef
32.
go back to reference Turksen, I.: An ontological and epistemological perspective of fuzzy set theory. Elsevier Science Inc. (2005). Turksen, I.: An ontological and epistemological perspective of fuzzy set theory. Elsevier Science Inc. (2005).
33.
go back to reference Medasani, S., and Kim, J., An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 19:391–417, 1998.CrossRef Medasani, S., and Kim, J., An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 19:391–417, 1998.CrossRef
34.
go back to reference Oliveira, J. V. D., and Pedrycz, W., Advances in fuzzy clustering and its applications. Wiley, Chichester, 2007.CrossRef Oliveira, J. V. D., and Pedrycz, W., Advances in fuzzy clustering and its applications. Wiley, Chichester, 2007.CrossRef
35.
go back to reference Melin, P., and Castillo, O., A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40:5413–5423, 2013.CrossRef Melin, P., and Castillo, O., A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40:5413–5423, 2013.CrossRef
36.
go back to reference Melin, P., Gonzalez, C., Castro, J. R., Mendoza, O., and Castillo, O., Edge-detection method for image processing based on generalized type-2 fuzzy logic. Fuzzy Syst. IEEE Trans. 22:1515–1525, 2014.CrossRef Melin, P., Gonzalez, C., Castro, J. R., Mendoza, O., and Castillo, O., Edge-detection method for image processing based on generalized type-2 fuzzy logic. Fuzzy Syst. IEEE Trans. 22:1515–1525, 2014.CrossRef
37.
go back to reference Zarinbal, M., Zarandi, M. F., and Turksen, I., Interval type-2 relative entropy fuzzy C-means clustering. Inf. Sci. 272:49–72, 2014.CrossRef Zarinbal, M., Zarandi, M. F., and Turksen, I., Interval type-2 relative entropy fuzzy C-means clustering. Inf. Sci. 272:49–72, 2014.CrossRef
38.
go back to reference Linda, O., and Manic, M., General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20:883–897, 2012.CrossRef Linda, O., and Manic, M., General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans. Fuzzy Syst. 20:883–897, 2012.CrossRef
39.
go back to reference Pedrycz, W., Collaborative fuzzy clustering. Pattern Recogn. Lett. 23:1675–1686, 2002.CrossRef Pedrycz, W., Collaborative fuzzy clustering. Pattern Recogn. Lett. 23:1675–1686, 2002.CrossRef
40.
go back to reference Falcon, R., Jeon, G., Bello, R., Jeong, J.: Learning collaboration links in a collaborative fuzzy clustering environment. In: MICAI: Advances in artificial intelligence lecture notes in computer science. pp. 483–495 (2007). Falcon, R., Jeon, G., Bello, R., Jeong, J.: Learning collaboration links in a collaborative fuzzy clustering environment. In: MICAI: Advances in artificial intelligence lecture notes in computer science. pp. 483–495 (2007).
41.
go back to reference Yu, F., Tang, J., Cai, R.: A necessary preprocessing in horizontal collaborative fuzzy clustering. IEEE Int. Conf. Granular Comput. (GRC 2007). 399–399 (2007). Yu, F., Tang, J., Cai, R.: A necessary preprocessing in horizontal collaborative fuzzy clustering. IEEE Int. Conf. Granular Comput. (GRC 2007). 399–399 (2007).
42.
go back to reference Coletta, L. F. S., Vendramin, L., Hruschka, E. R., Campello, R. J. G. B., and Pedrycz, W., Collaborative Fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans. Fuzzy Syst. 20:444–462, 2012.CrossRef Coletta, L. F. S., Vendramin, L., Hruschka, E. R., Campello, R. J. G. B., and Pedrycz, W., Collaborative Fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans. Fuzzy Syst. 20:444–462, 2012.CrossRef
43.
go back to reference Pedrycz, W., and Rai, P., Collaborative clustering with the use of fuzzy C-means and its quantification. Fuzzy Sets Syst. 159:2399–2427, 2008.CrossRef Pedrycz, W., and Rai, P., Collaborative clustering with the use of fuzzy C-means and its quantification. Fuzzy Sets Syst. 159:2399–2427, 2008.CrossRef
44.
go back to reference Pedrycz, W.: Knowledge-based clustering from data to information granules. John Wiley & Sons, Inc. (2005). Pedrycz, W.: Knowledge-based clustering from data to information granules. John Wiley & Sons, Inc. (2005).
45.
go back to reference Zarinbal, M., Zarandi, M. H. F., and Turksen, I. B., Relative entropy collaborative fuzzy clustering method. Pattern Recogn. 48:933–940, 2015.CrossRef Zarinbal, M., Zarandi, M. H. F., and Turksen, I. B., Relative entropy collaborative fuzzy clustering method. Pattern Recogn. 48:933–940, 2015.CrossRef
46.
go back to reference Hwang, C., and Rhee, F. C., Uncertain fuzzy clustering : Interval type-2 fuzzy approach to C -means. IEEE Trans. Fuzzy Syst. 15:107–120, 2007.CrossRef Hwang, C., and Rhee, F. C., Uncertain fuzzy clustering : Interval type-2 fuzzy approach to C -means. IEEE Trans. Fuzzy Syst. 15:107–120, 2007.CrossRef
47.
go back to reference Nixon, M.S., Aguado, A.S.: Feature extraction and image processing. Newnes (2002). Nixon, M.S., Aguado, A.S.: Feature extraction and image processing. Newnes (2002).
48.
go back to reference Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160:1457–1473, 2009.CrossRef Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160:1457–1473, 2009.CrossRef
49.
go back to reference Zhang, A., Gertych, A., Liu, B.J.: Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput. Med. Imag. Graph. 31, 299–310. Zhang, A., Gertych, A., Liu, B.J.: Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput. Med. Imag. Graph. 31, 299–310.
50.
go back to reference Kang, H., Pinti, A., Taleb-Ahmeda, A., and Zeng, X., An intelligent generalized system for tissue classification on MR images by integrating qualitative medical knowledge. Biomed. Signal Proc. Contrl. 6:21–26, 2011.CrossRef Kang, H., Pinti, A., Taleb-Ahmeda, A., and Zeng, X., An intelligent generalized system for tissue classification on MR images by integrating qualitative medical knowledge. Biomed. Signal Proc. Contrl. 6:21–26, 2011.CrossRef
51.
go back to reference Shang, C., and Barnes, D., Fuzzy-rough feature selection aided support vector machines for Mars image classification. Comput. Vis. Image Underst. 17:202–213, 2013.CrossRef Shang, C., and Barnes, D., Fuzzy-rough feature selection aided support vector machines for Mars image classification. Comput. Vis. Image Underst. 17:202–213, 2013.CrossRef
52.
go back to reference Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley-Interscience (2000). Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley-Interscience (2000).
53.
go back to reference Bishop, C., Pattern recognition and machine learning. Springer Science, New York, 2006. Bishop, C., Pattern recognition and machine learning. Springer Science, New York, 2006.
Metadata
Title
A Type-2 Fuzzy Image Processing Expert System for Diagnosing Brain Tumors
Authors
M. Zarinbal
M. H. Fazel Zarandi
I. B. Turksen
M. Izadi
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 10/2015
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-015-0311-6

Other articles of this Issue 10/2015

Journal of Medical Systems 10/2015 Go to the issue