Skip to main content
Top
Published in: Journal of Medical Systems 5/2011

01-10-2011 | Original Paper

A Hand-held Mosaicked Multispectral Imaging Device for Early Stage Pressure Ulcer Detection

Authors: Hairong Qi, Linghua Kong, Chao Wang, Lidan Miao

Published in: Journal of Medical Systems | Issue 5/2011

Login to get access

Abstract

The use of a custom filter mosaic overlaying a CMOS/CCD sensor represents a novel idea to multispectral imaging. The innovation provides simple, miniaturized, low cost instrumentation that has many potential biological applications which require a hand-held detector. This makes it extremely adaptable and can serve as an integrated component to distributed diagnosis and home healthcare (D2H2). A mosaicked sensor is a monolithic array of many sensors, arranged in a geometric pattern with each sensor covered by an optical filter sensitive to a specified wavelength. In this way, only one spectral component is sensed at each pixel and the other spectral components must be estimated from neighbors. Although with great potential, one challenge faced by this device, however, is the reconstruction of the high-resolution full-spectral image from the low-resolution input. Due to the physical limitations in fabrication and the usage of the multispectral filter mosaic, two types of degradations exist, including filter misalignment and the missing spectral components, that must be corrected using intelligent algorithms to take full advantage of the hardware capability of the device. In this paper, we first describe a custom geometric correction method to restore the image from the misalignment distortion. We then present a binary tree-based generic demosaicking algorithm to efficiently estimate the missing special components and reconstruct a high-resolution full-spectral image. We choose early detection of pressure ulcer as a targeting area as early stage pressure ulcers and other subcutaneous lesions are nearly invisible in clinical settings, particularly so for dark pigmented skin. We show how the geometric correction and demosaicking algorithms successfully reconstruct a full-spectral image from which apparent contrast enhancement between damaged skin and the normal skin is observed.
Literature
1.
go back to reference Karacali, B., and Snyder, W., Automatic target detection using multispectral imaging. In: 31st Applied Imagery Pattern Recognition Workshop. p. 55. Washington, DC, 2002. Karacali, B., and Snyder, W., Automatic target detection using multispectral imaging. In: 31st Applied Imagery Pattern Recognition Workshop. p. 55. Washington, DC, 2002.
2.
go back to reference Chen, Y. R., Chao, K., and Kim, M. S., Machine vision technology for agriculture applications. Comput. Electron. Agric. 36(2–3):173–191, 2002.CrossRef Chen, Y. R., Chao, K., and Kim, M. S., Machine vision technology for agriculture applications. Comput. Electron. Agric. 36(2–3):173–191, 2002.CrossRef
3.
go back to reference Blackman, G., Surface inspection—scanning the surface. In: Imaging and Machine Vision Europe, 2009. Blackman, G., Surface inspection—scanning the surface. In: Imaging and Machine Vision Europe, 2009.
4.
go back to reference Lu, R., and Park, B., Hyperspectral and multispectral imaging for food quality and safety. Sensing and Instrumentation for Food Quality and Safety 2(3):131–132, 2008.CrossRef Lu, R., and Park, B., Hyperspectral and multispectral imaging for food quality and safety. Sensing and Instrumentation for Food Quality and Safety 2(3):131–132, 2008.CrossRef
5.
go back to reference Lu, R., Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Elsevier Journal on Postharvest Biology and Technology 31:147–157, 2004.CrossRef Lu, R., Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Elsevier Journal on Postharvest Biology and Technology 31:147–157, 2004.CrossRef
6.
go back to reference Miao, L., Qi, H., and Szu, H., A maximum entropy approach to unsupervised mixed pixel decomposition. IEEE Trans. Image Process 16(4):1008–1021, 2007.CrossRefMathSciNet Miao, L., Qi, H., and Szu, H., A maximum entropy approach to unsupervised mixed pixel decomposition. IEEE Trans. Image Process 16(4):1008–1021, 2007.CrossRefMathSciNet
7.
go back to reference Silva, D. M., and Abileah, R., System and method for multispectral image processing of ocean imagery. United State Patent 6304664, 2010. Silva, D. M., and Abileah, R., System and method for multispectral image processing of ocean imagery. United State Patent 6304664, 2010.
8.
go back to reference Wu, Q., Zeng, L., Ke, H., Zheng, H., Gao, X., and Wang, D., A multispectral imaging analysis system for early detection of cervical cancer. In: Medical Imaging: Physics of Medical Imaging. Vol. 5745, pp. 801–809. SPIE, 2005. Wu, Q., Zeng, L., Ke, H., Zheng, H., Gao, X., and Wang, D., A multispectral imaging analysis system for early detection of cervical cancer. In: Medical Imaging: Physics of Medical Imaging. Vol. 5745, pp. 801–809. SPIE, 2005.
9.
go back to reference Levenson, R. M., Lynch, D. T., Kobayashi, H., Backer, J. M., and Backer, M. V., Multiplexing with multispectral imaging: from mice to microscopy. ILAR J. (Institute for Laboratory Animal Research). 49(1):78–88, 2008. Levenson, R. M., Lynch, D. T., Kobayashi, H., Backer, J. M., and Backer, M. V., Multiplexing with multispectral imaging: from mice to microscopy. ILAR J. (Institute for Laboratory Animal Research). 49(1):78–88, 2008.
10.
go back to reference Levenson, R. M., and Mansfield, J. R., Multispectral imaging in biology and medicine: Slices of life. Cytometry: Part A. 69A(8):748–758, 2006.CrossRef Levenson, R. M., and Mansfield, J. R., Multispectral imaging in biology and medicine: Slices of life. Cytometry: Part A. 69A(8):748–758, 2006.CrossRef
11.
go back to reference Scribner, D. A., Schuler, J., and Kruer, M. R., Infrared multispectral sensors: re-considering typical design assumptions. Naval Research Lab., Code 5636, 1998. Scribner, D. A., Schuler, J., and Kruer, M. R., Infrared multispectral sensors: re-considering typical design assumptions. Naval Research Lab., Code 5636, 1998.
12.
go back to reference Barrie, J. D., Aitchison, K. A., Rossano, G. S., and Abraham, M. H., Patterning of multilayer dielectric optical coating for multispectral CCDs. Thin Solid Films 270(1–2):6–9, 1995.CrossRef Barrie, J. D., Aitchison, K. A., Rossano, G. S., and Abraham, M. H., Patterning of multilayer dielectric optical coating for multispectral CCDs. Thin Solid Films 270(1–2):6–9, 1995.CrossRef
13.
go back to reference Kong, L., Sprigle, S., Duckworth, M., Yi, D., Caspall, J., Wang, J., and Zhao, F., Handheld erythema and bruise detector. In: Proceedings of SPIE—Medical Imaging: Computer-Aided Diagnosis. Vol. 6915, 2008. Kong, L., Sprigle, S., Duckworth, M., Yi, D., Caspall, J., Wang, J., and Zhao, F., Handheld erythema and bruise detector. In: Proceedings of SPIE—Medical Imaging: Computer-Aided Diagnosis. Vol. 6915, 2008.
14.
go back to reference Kong, L., Yi, D., Sprigle, S., Wang, F., Wang, C., Liu, F., Adibi, A., and Tummala, R., Single sensor that outputs narrowband multispectral images. J. Biomed. Opt. 15:010502, 2010.CrossRef Kong, L., Yi, D., Sprigle, S., Wang, F., Wang, C., Liu, F., Adibi, A., and Tummala, R., Single sensor that outputs narrowband multispectral images. J. Biomed. Opt. 15:010502, 2010.CrossRef
15.
go back to reference Themelis, G., Yoo, J. S., and Ntziachristos, V., Multispectral imaging using multiple-band pass filters. Opt. Lett. 33(9):1023, 2008.CrossRef Themelis, G., Yoo, J. S., and Ntziachristos, V., Multispectral imaging using multiple-band pass filters. Opt. Lett. 33(9):1023, 2008.CrossRef
16.
go back to reference Vila, J., Calpe, J., Pla, F., Gomez, L., Connell, J., Marchant, J., Calleja, J., Mulqueen, M., Munoz, J., and Klaren, A., SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging 11:85–98, 2005.CrossRef Vila, J., Calpe, J., Pla, F., Gomez, L., Connell, J., Marchant, J., Calleja, J., Mulqueen, M., Munoz, J., and Klaren, A., SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging 11:85–98, 2005.CrossRef
17.
go back to reference Bayer, E. B., Color imaging array. United States Patent 3,971,065, 1976. Bayer, E. B., Color imaging array. United States Patent 3,971,065, 1976.
18.
go back to reference Packer, O., and Williams, D. R., Light, the retinal image, and photoreceptors. In: Shevell, S. K. (Ed.), The Science of Color. pp. 41–102. Optical Society of America, 2003. Packer, O., and Williams, D. R., Light, the retinal image, and photoreceptors. In: Shevell, S. K. (Ed.), The Science of Color. pp. 41–102. Optical Society of America, 2003.
19.
go back to reference Ramanath, R., Snyder, W. E., and Bilbro, G., Demosaicking methods for bayer color arrays. J. Electron. Imaging 11(3):306–315, 2002.CrossRef Ramanath, R., Snyder, W. E., and Bilbro, G., Demosaicking methods for bayer color arrays. J. Electron. Imaging 11(3):306–315, 2002.CrossRef
20.
go back to reference Lukac, R., Martin, K., and Plataniotis, K. N., Demosaikced image postprocessing using local color ratios. EEE Trans. Circuits Syst. Video Technol. 14(6):914–920, 2004.CrossRef Lukac, R., Martin, K., and Plataniotis, K. N., Demosaikced image postprocessing using local color ratios. EEE Trans. Circuits Syst. Video Technol. 14(6):914–920, 2004.CrossRef
21.
go back to reference Chang, L., and Tan, Y. P., Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Trans. Consum. Electron. 50(1):355–365, 2004.CrossRef Chang, L., and Tan, Y. P., Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Trans. Consum. Electron. 50(1):355–365, 2004.CrossRef
22.
go back to reference Gunturk, B. K., Altunbasak, Y., and Mersereau, R. M., Color plane interpolation using alternating projections. IEEE Trans. Image Process. 11(9):997–1013, 2002.CrossRef Gunturk, B. K., Altunbasak, Y., and Mersereau, R. M., Color plane interpolation using alternating projections. IEEE Trans. Image Process. 11(9):997–1013, 2002.CrossRef
23.
go back to reference Li, X., and Orchard, M. T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10):1521–1527, 2001.CrossRef Li, X., and Orchard, M. T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10):1521–1527, 2001.CrossRef
24.
go back to reference Miao, L., Qi, H., Ramanath, R., and Snyder, W. E., Binary tree-based generic demosaicking algorithm for multispectral filter arrays. IEEE Trans. Image Process. 15(11):3550–3558, 2006.CrossRef Miao, L., Qi, H., Ramanath, R., and Snyder, W. E., Binary tree-based generic demosaicking algorithm for multispectral filter arrays. IEEE Trans. Image Process. 15(11):3550–3558, 2006.CrossRef
25.
go back to reference Ramanath, R., Snyder, W. E., and Qi, H., Mosaic multispectral focal plane array cameras. In: SPIE Defense and Security Symposium, Orlando (Kissimmee), FL, 12–16 April 2004. Ramanath, R., Snyder, W. E., and Qi, H., Mosaic multispectral focal plane array cameras. In: SPIE Defense and Security Symposium, Orlando (Kissimmee), FL, 12–16 April 2004.
26.
go back to reference Sprigle, S., Zhang, L., and Duckworth, M., Detection of skin erythema in darkly pigmented skin using multispectral images. Skin & Wound Care 22(4):172–179, 2009.CrossRef Sprigle, S., Zhang, L., and Duckworth, M., Detection of skin erythema in darkly pigmented skin using multispectral images. Skin & Wound Care 22(4):172–179, 2009.CrossRef
27.
go back to reference Mersereau, R., The processing of hexagonally samples two-dimensional signals. Proc. IEEE 67(6):930–949, 1979.CrossRef Mersereau, R., The processing of hexagonally samples two-dimensional signals. Proc. IEEE 67(6):930–949, 1979.CrossRef
28.
go back to reference Middleton, L., and Sivaswamy, J., Edge detection in a hexagonal-image processing framework. Image Vis. Comput. 19(14):1071–1081, 2001.CrossRef Middleton, L., and Sivaswamy, J., Edge detection in a hexagonal-image processing framework. Image Vis. Comput. 19(14):1071–1081, 2001.CrossRef
29.
go back to reference Miao, L., and Qi, H., The design and evaluation of a generic method for generating mosaicked multispectral filter arrays. IEEE Trans. Image Process. 15(9):2780–2791, 2006.CrossRef Miao, L., and Qi, H., The design and evaluation of a generic method for generating mosaicked multispectral filter arrays. IEEE Trans. Image Process. 15(9):2780–2791, 2006.CrossRef
30.
go back to reference Lu, W., and Tan, Y. P., Color filter array demosaicking: new method and performance measures. IEEE Trans. Image Process. 12(10):1194–1210, 2003.CrossRef Lu, W., and Tan, Y. P., Color filter array demosaicking: new method and performance measures. IEEE Trans. Image Process. 12(10):1194–1210, 2003.CrossRef
31.
go back to reference Kimmel, R., Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. Image Process. 8(9):1221–1228, 1999.CrossRef Kimmel, R., Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. Image Process. 8(9):1221–1228, 1999.CrossRef
Metadata
Title
A Hand-held Mosaicked Multispectral Imaging Device for Early Stage Pressure Ulcer Detection
Authors
Hairong Qi
Linghua Kong
Chao Wang
Lidan Miao
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 5/2011
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9508-x

Other articles of this Issue 5/2011

Journal of Medical Systems 5/2011 Go to the issue