Skip to main content
Top
Published in: Journal of Medical Systems 4/2010

01-08-2010 | Original Paper

Ideal Filtering Approach on DCT Domain for Biomedical Signals: Index Blocked DCT Filtering Method (IB-DCTFM)

Authors: Hang Sik Shin, Chungkeun Lee, Myoungho Lee

Published in: Journal of Medical Systems | Issue 4/2010

Login to get access

Abstract

We proposed Index-Blocked Discrete Cosine Transform Filtering Method (IB-DCTFM) to design ideal frequency range filter on DCT domain for biomedical signal which frequently exposed to specific frequency noise such as motion artifacts and 50/60 Hz powerline interference. IB-DCTFM removes unwanted frequency range signal on time domain by blocking specific DCT index on DCT domain. In simulation, electrocardiography, electromyography, photoplethysmography are used as a signal source and FIR, IIR and adaptive filter are used for comparison with proposed IB-DCTFM. To evaluate filter performance, we calculated signal-to-noise ratio and correlation coefficient to clean signal of each signal and filtering method respectively. As a result of filter simulation, average signal to noise ration and correlation coefficient of IB-DCTFM are improved about 75.8 dB/0.477, and FIR, IIR and adaptive filtering results are 24.8 dB/0.130, 54.3 dB/0.440 and 29.5 dB/0.200 respectively.
Literature
1.
go back to reference Tompkins, W. J., Biomedical digital signal processing: C language examples and laboratory experiments for the IBM PC. Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993. Tompkins, W. J., Biomedical digital signal processing: C language examples and laboratory experiments for the IBM PC. Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993.
3.
go back to reference Amit, J. N., and Tompkins, W. J., EMD-based 60-Hz noise filtering of the ECG. Proc of the 29th Annual Int Conf of the IEEE EMBS, Cité Internationale, Lyon, France, August 23–26, 2007. Amit, J. N., and Tompkins, W. J., EMD-based 60-Hz noise filtering of the ECG. Proc of the 29th Annual Int Conf of the IEEE EMBS, Cité Internationale, Lyon, France, August 23–26, 2007.
4.
go back to reference Rangaraj, M. R., Biomedical signal analysis: A case-study approach. IEEE Press Series on Biomedical Engineering: Wiley, NY, USA, 2002. Rangaraj, M. R., Biomedical signal analysis: A case-study approach. IEEE Press Series on Biomedical Engineering: Wiley, NY, USA, 2002.
6.
go back to reference Pei, S. C., and Tseng, C. C., Adaptive IIR notch filter based on least mean p-power error criterion. IEEE Trans. Circuits Syst. 2 Analog Digit. Signal Process. 40 (8)525–528, 1993. doi:10.1109/82.242343.CrossRef Pei, S. C., and Tseng, C. C., Adaptive IIR notch filter based on least mean p-power error criterion. IEEE Trans. Circuits Syst. 2 Analog Digit. Signal Process. 40 (8)525–528, 1993. doi:10.​1109/​82.​242343.CrossRef
7.
go back to reference Zhang, D., Wavelet approach for ECG baseline wander correction and noise reduction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1212–1215, 2005. Zhang, D., Wavelet approach for ECG baseline wander correction and noise reduction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1212–1215, 2005.
8.
go back to reference Kim, S. H., Ryoo, D. W. et al., Adaptive noise cancellation using accelerometers for the PPG signal from forehead. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2564–2567, 2007. doi:10.1109/IEMBS.2007.4352852. Kim, S. H., Ryoo, D. W. et al., Adaptive noise cancellation using accelerometers for the PPG signal from forehead. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2564–2567, 2007. doi:10.​1109/​IEMBS.​2007.​4352852.
10.
go back to reference Oppenheim, A.V., Schafer, R. S., and Buck, J. R., Discrete-time signal processing, 2nd edition. Prentice Hall, Upper Sandle River, NJ, 1999. Oppenheim, A.V., Schafer, R. S., and Buck, J. R., Discrete-time signal processing, 2nd edition. Prentice Hall, Upper Sandle River, NJ, 1999.
11.
go back to reference Shamir, M., Eidelman, L. A., et al., Pulse oximetry plethysmographic waveform during changes in blood volume. Br. J. Anaesth. 82 (2)178–181, 1999. Shamir, M., Eidelman, L. A., et al., Pulse oximetry plethysmographic waveform during changes in blood volume. Br. J. Anaesth. 82 (2)178–181, 1999.
12.
go back to reference Zhang, W., Wang, X., et al., Noise reduction in ECG signal based on adaptive wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2699–2702, 2005. Zhang, W., Wang, X., et al., Noise reduction in ECG signal based on adaptive wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2699–2702, 2005.
13.
15.
go back to reference Akay, M., Biomedical signal processing. Academic: San Diego, CA, 1994. Akay, M., Biomedical signal processing. Academic: San Diego, CA, 1994.
17.
go back to reference Foo, J. Y. A., and Wilson, S. J., A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med. Biol. Eng. Comput. 44:140–145, 2006. doi:10.1007/s11517-005-0008-y.CrossRef Foo, J. Y. A., and Wilson, S. J., A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med. Biol. Eng. Comput. 44:140–145, 2006. doi:10.​1007/​s11517-005-0008-y.CrossRef
18.
go back to reference Wood, L. B., and Asada, H. H., Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3525–3528, 2006.CrossRef Wood, L. B., and Asada, H. H., Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3525–3528, 2006.CrossRef
19.
20.
go back to reference Ortolan, R. L., Mori, R. N., et al., Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (1)60–69, 2003. doi:10.1109/TNSRE.2003.810432.CrossRef Ortolan, R. L., Mori, R. N., et al., Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (1)60–69, 2003. doi:10.​1109/​TNSRE.​2003.​810432.CrossRef
21.
go back to reference Zhang, Y. T., Parker, P. A., and Scott, R. N., Signal-to-noise ratios of the myoelectric channel with additive noise. Proc. 19th Ann. Intern. Conf. IEEE Eng. Med. Biol. Soc. 4 (30)1582–1584, 1997. Zhang, Y. T., Parker, P. A., and Scott, R. N., Signal-to-noise ratios of the myoelectric channel with additive noise. Proc. 19th Ann. Intern. Conf. IEEE Eng. Med. Biol. Soc. 4 (30)1582–1584, 1997.
22.
go back to reference Bazhyna, A., Gotchev, A., Christov, I. I., Daskalov, I. K., and Egiazarian, K., Beat-to-beat noise removal in noninvasive His-bundle electrocardiogram. Med. Biol. Eng. Comput. 42 (5)712–719, 2004. doi:10.1007/BF02347555.CrossRef Bazhyna, A., Gotchev, A., Christov, I. I., Daskalov, I. K., and Egiazarian, K., Beat-to-beat noise removal in noninvasive His-bundle electrocardiogram. Med. Biol. Eng. Comput. 42 (5)712–719, 2004. doi:10.​1007/​BF02347555.CrossRef
23.
go back to reference Nikolaev, N., Gotchev, A., Egiazarian, K., and Nikolov, Z., Suppression of electromyogram interference on the electrocardiogram by transform domain denoising. Med. Biol. Eng. Comput. 39 (6)649–655, 2001. doi:10.1007/BF02345437.CrossRef Nikolaev, N., Gotchev, A., Egiazarian, K., and Nikolov, Z., Suppression of electromyogram interference on the electrocardiogram by transform domain denoising. Med. Biol. Eng. Comput. 39 (6)649–655, 2001. doi:10.​1007/​BF02345437.CrossRef
Metadata
Title
Ideal Filtering Approach on DCT Domain for Biomedical Signals: Index Blocked DCT Filtering Method (IB-DCTFM)
Authors
Hang Sik Shin
Chungkeun Lee
Myoungho Lee
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 4/2010
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-009-9289-2

Other articles of this Issue 4/2010

Journal of Medical Systems 4/2010 Go to the issue