Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 4/2020

Open Access 01-12-2020

How to Use Online Tools to Generate New Hypotheses for Mammary Gland Biology Research: A Case Study for Wnt7b

Authors: Yorick Bernardus Cornelis van de Grift, Nika Heijmans, Renée van Amerongen

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 4/2020

Login to get access

Abstract

An increasing number of ‘-omics’ datasets, generated by labs all across the world, are becoming available. They contain a wealth of data that are largely unexplored. Not every scientist, however, will have access to the required resources and expertise to analyze such data from scratch. Fortunately, a growing number of investigators is dedicating their time and effort to the development of user friendly, online applications that allow researchers to use and investigate these datasets. Here, we will illustrate the usefulness of such an approach. Using regulation of Wnt7b expression as an example, we will highlight a selection of accessible tools and resources that are available to researchers in the area of mammary gland biology. We show how they can be used for in silico analyses of gene regulatory mechanisms, resulting in new hypotheses and providing leads for experimental follow up. We also call out to the mammary gland community to join forces in a coordinated effort to generate and share additional tissue-specific ‘-omics’ datasets and thereby expand the in silico toolbox.
Literature
3.
go back to reference Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential Expression of Human Wnt Genes 2, 3, 4, and 7B in Human Breast Cell Lines and Normal and Disease States of Human Breast Tissue. Cancer Res. 1994;54:2615–21.PubMed Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential Expression of Human Wnt Genes 2, 3, 4, and 7B in Human Breast Cell Lines and Normal and Disease States of Human Breast Tissue. Cancer Res. 1994;54:2615–21.PubMed
4.
go back to reference Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol. 2004;25:1337–42.PubMed Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol. 2004;25:1337–42.PubMed
5.
go back to reference Chen J, Liu T-Y, Peng H-T, Wu Y-Q, Zhang L-L, Lin X-H. Up-regulation of Wnt7b rather than Wnt1, Wnt7a, and Wnt9a indicates poor prognosis in breast cancer. Int J Clin Exp Pathol. 2018;11:4552–61.PubMedPubMedCentral Chen J, Liu T-Y, Peng H-T, Wu Y-Q, Zhang L-L, Lin X-H. Up-regulation of Wnt7b rather than Wnt1, Wnt7a, and Wnt9a indicates poor prognosis in breast cancer. Int J Clin Exp Pathol. 2018;11:4552–61.PubMedPubMedCentral
6.
go back to reference Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA. Myeloid wnt7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 2014;74:2962–73.PubMedPubMedCentralCrossRef Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA. Myeloid wnt7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 2014;74:2962–73.PubMedPubMedCentralCrossRef
8.
go back to reference Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235:3404–12.PubMedPubMedCentralCrossRef Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235:3404–12.PubMedPubMedCentralCrossRef
9.
go back to reference Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol. 1994;14:6278–86.PubMedPubMedCentral Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol. 1994;14:6278–86.PubMedPubMedCentral
10.
go back to reference Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PAW, Dale TC. Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci [Internet]. 2000 [cited 2020 Jul 7];113:2129–38. Naylor S, Smalley MJ, Robertson D, Gusterson BA, Edwards PAW, Dale TC. Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J Cell Sci [Internet]. 2000 [cited 2020 Jul 7];113:2129–38.
12.
go back to reference Shimizu H, Julius MA, Giarré M, Zheng Z, Brown AMC, Kitajewski J. Transformation by wnt family proteins correlates with regulation of β- catenin. Cell Growth Differ. 1997;8:1349–58.PubMed Shimizu H, Julius MA, Giarré M, Zheng Z, Brown AMC, Kitajewski J. Transformation by wnt family proteins correlates with regulation of β- catenin. Cell Growth Differ. 1997;8:1349–58.PubMed
13.
16.
go back to reference Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–72.PubMedCentralCrossRef Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–72.PubMedCentralCrossRef
17.
go back to reference Giraddi RR, Chung C-Y, Heinz RE, Perou CM, Wahl GM, Spike BT. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. CellReports [Internet]. 2018 [cited 2020 Jul 15];24:1653–1666.e7. Available from: https://doi.org/10.1016/j.celrep.2018.07.025 Giraddi RR, Chung C-Y, Heinz RE, Perou CM, Wahl GM, Spike BT. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. CellReports [Internet]. 2018 [cited 2020 Jul 15];24:1653–1666.e7. Available from: https://​doi.​org/​10.​1016/​j.​celrep.​2018.​07.​025
18.
go back to reference Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan G-C, Chen M, Guo G. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 2018;172(5):1091-1107.e17 Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan G-C, Chen M, Guo G. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 2018;172(5):1091-1107.e17
19.
go back to reference Khan A, Zhang X. DbSUPER: A database of Super-enhancers in mouse and human genome. Nucleic Acids Res [Internet]. 2016 [cited 2020 Jul 25];44:D164–71. Khan A, Zhang X. DbSUPER: A database of Super-enhancers in mouse and human genome. Nucleic Acids Res [Internet]. 2016 [cited 2020 Jul 25];44:D164–71.
21.
go back to reference Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583:590–5.CrossRef Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583:590–5.CrossRef
22.
go back to reference Schaum N, Lehallier B, Hahn O, Hosseinzadeh S, Lee SE, Sit R, et al. The murine transcriptome reveals global aging nodes with organ-specific phase and amplitude. bioRxiv. 2019; Schaum N, Lehallier B, Hahn O, Hosseinzadeh S, Lee SE, Sit R, et al. The murine transcriptome reveals global aging nodes with organ-specific phase and amplitude. bioRxiv. 2019;
24.
go back to reference Jung I, Schmitt A, Diao Y, Lee AJ, Liu T, Yang D. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat Genet. 2019;51:1442–9.PubMedPubMedCentralCrossRef Jung I, Schmitt A, Diao Y, Lee AJ, Liu T, Yang D. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat Genet. 2019;51:1442–9.PubMedPubMedCentralCrossRef
25.
go back to reference Papatheodorou I, Moreno P, Manning J, Fuentes AMP, George N, Fexova S. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2020;48:D77-83.PubMed Papatheodorou I, Moreno P, Manning J, Fuentes AMP, George N, Fexova S. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2020;48:D77-83.PubMed
26.
go back to reference Wang J, Dai X, Berry LD, Cogan JD, Liu Q, Shyr Y. HACER: An atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Res. 2019;47:D106-12.PubMedCrossRef Wang J, Dai X, Berry LD, Cogan JD, Liu Q, Shyr Y. HACER: An atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Res. 2019;47:D106-12.PubMedCrossRef
27.
go back to reference Fan Z, Chen R, Chen X. SpatialDB: A database for spatially resolved transcriptomes. Nucleic Acids Res. 2020;48:D233-7.PubMed Fan Z, Chen R, Chen X. SpatialDB: A database for spatially resolved transcriptomes. Nucleic Acids Res. 2020;48:D233-7.PubMed
29.
go back to reference Gao T, He B, Liu S, Zhu H, Tan K, Qian J. EnhancerAtlas: A resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics. 2016;32:3543–51.PubMedPubMedCentral Gao T, He B, Liu S, Zhu H, Tan K, Qian J. EnhancerAtlas: A resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics. 2016;32:3543–51.PubMedPubMedCentral
30.
go back to reference Gao T, Qian J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020;48:D58–64. Gao T, Qian J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020;48:D58–64.
31.
32.
go back to reference Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature. 2019;571:510–4.PubMedPubMedCentralCrossRef Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature. 2019;571:510–4.PubMedPubMedCentralCrossRef
34.
go back to reference Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C. Cistrome Data Browser: A data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658-62.PubMedCrossRef Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C. Cistrome Data Browser: A data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658-62.PubMedCrossRef
35.
go back to reference Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H. Cistrome Data Browser: Expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729-35.PubMedCrossRef Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H. Cistrome Data Browser: Expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729-35.PubMedCrossRef
36.
go back to reference Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y. Construction of a human cell landscape at single-cell level. Nature. 2020;581:303–9.PubMedCrossRef Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y. Construction of a human cell landscape at single-cell level. Nature. 2020;581:303–9.PubMedCrossRef
38.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.PubMedCrossRef
41.
go back to reference Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90-7.PubMedPubMedCentralCrossRef Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90-7.PubMedPubMedCentralCrossRef
43.
go back to reference Ramos J, Das J, Felty Q, Yoo C, Poppiti R, Murrell D. NRF1 motif sequence-enriched genes involved in ER/PR −ve HER2 +ve breast cancer signaling pathways Breast Cancer. Res Treat. 2018;172:469–85. Ramos J, Das J, Felty Q, Yoo C, Poppiti R, Murrell D. NRF1 motif sequence-enriched genes involved in ER/PR −ve HER2 +ve breast cancer signaling pathways Breast Cancer. Res Treat. 2018;172:469–85.
44.
go back to reference Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology. 2008;149:6236–50.PubMedPubMedCentralCrossRef Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology. 2008;149:6236–50.PubMedPubMedCentralCrossRef
45.
go back to reference Shu W, Jiang YQ, Lu MM, Morrisey EE. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development. 2002;129:4831–42.PubMedCrossRef Shu W, Jiang YQ, Lu MM, Morrisey EE. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development. 2002;129:4831–42.PubMedCrossRef
46.
go back to reference Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank LJ, Anderson WJ. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development. 2008;135:1625–34.PubMedCrossRef Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank LJ, Anderson WJ. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development. 2008;135:1625–34.PubMedCrossRef
47.
go back to reference Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development. 2009;136:161–71.PubMedCrossRef Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development. 2009;136:161–71.PubMedCrossRef
49.
go back to reference Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell [Internet]. 2014;159:374–87. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell [Internet]. 2014;159:374–87.
50.
go back to reference Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P. Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition. Cell Rep. 2018;22:2615–27.PubMedPubMedCentralCrossRef Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P. Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition. Cell Rep. 2018;22:2615–27.PubMedPubMedCentralCrossRef
51.
go back to reference Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.PubMedPubMedCentralCrossRef Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.PubMedPubMedCentralCrossRef
52.
go back to reference Pott S, Lieb JD. What are super-enhancers? Nat. Genet. 2015. p. 8–12. Pott S, Lieb JD. What are super-enhancers? Nat. Genet. 2015. p. 8–12.
53.
go back to reference Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521:366–70.PubMedPubMedCentralCrossRef Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521:366–70.PubMedPubMedCentralCrossRef
55.
go back to reference Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. The 3D Genome Browser: A web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol Genome Biology. 2018;19:1–12. Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, et al. The 3D Genome Browser: A web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol Genome Biology. 2018;19:1–12.
56.
go back to reference Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature Nature Publishing Group. 2012;485:376–80. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature Nature Publishing Group. 2012;485:376–80.
57.
go back to reference Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. Elsevier Inc.; 2014;159:1665–80. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. Elsevier Inc.; 2014;159:1665–80.
58.
go back to reference Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell. 2017;171:557–72.PubMedPubMedCentralCrossRef Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell. 2017;171:557–72.PubMedPubMedCentralCrossRef
61.
go back to reference McArthur E, Capra J. Topologically associating domain (TAD) boundaries stable across diverse cell types are evolutionarily constrained and enriched for heritability. bioRxiv. 2020; McArthur E, Capra J. Topologically associating domain (TAD) boundaries stable across diverse cell types are evolutionarily constrained and enriched for heritability. bioRxiv. 2020;
62.
go back to reference Chung CY, Ma Z, Dravis C, Preissl S, Poirion O, Luna G. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Rep. 2019;29:495–510.PubMedPubMedCentralCrossRef Chung CY, Ma Z, Dravis C, Preissl S, Poirion O, Luna G. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Rep. 2019;29:495–510.PubMedPubMedCentralCrossRef
64.
go back to reference Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell. 2018;71:858–71.PubMedPubMedCentralCrossRef Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell. 2018;71:858–71.PubMedPubMedCentralCrossRef
66.
go back to reference James Kent W, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.PubMedCrossRef James Kent W, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.PubMedCrossRef
67.
go back to reference Ahituv N, Prabhakar S, Poulin F, Rubin EM, Couronne O. Mapping cis-regulatory domains in the human genome using multi-species conservation of synteny. Hum Mol Genet. 2005;14:3057–63.PubMedCrossRef Ahituv N, Prabhakar S, Poulin F, Rubin EM, Couronne O. Mapping cis-regulatory domains in the human genome using multi-species conservation of synteny. Hum Mol Genet. 2005;14:3057–63.PubMedCrossRef
68.
go back to reference Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet. 2004;5:456–65.PubMedCrossRef Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet. 2004;5:456–65.PubMedCrossRef
70.
go back to reference Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science (80-). 2004;304:1321–5. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science (80-). 2004;304:1321–5.
71.
go back to reference Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M. In vivo enhancer analysis of human conserved non-coding sequences. Nature. 2006;444:499–502.PubMedCrossRef Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M. In vivo enhancer analysis of human conserved non-coding sequences. Nature. 2006;444:499–502.PubMedCrossRef
72.
go back to reference Chen J, Sun M, Hurst LD, Carmichael GG, Rowley JD. Human antisense genes have unusually short introns: Evidence for selection for rapid transcription. Trends Genet. 2005;21:203–7.PubMedCrossRef Chen J, Sun M, Hurst LD, Carmichael GG, Rowley JD. Human antisense genes have unusually short introns: Evidence for selection for rapid transcription. Trends Genet. 2005;21:203–7.PubMedCrossRef
74.
76.
go back to reference Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010;21:855–63.PubMedCrossRef Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010;21:855–63.PubMedCrossRef
77.
go back to reference Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res. 2010;2:1–14. Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res. 2010;2:1–14.
Metadata
Title
How to Use Online Tools to Generate New Hypotheses for Mammary Gland Biology Research: A Case Study for Wnt7b
Authors
Yorick Bernardus Cornelis van de Grift
Nika Heijmans
Renée van Amerongen
Publication date
01-12-2020
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 4/2020
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-020-09474-z

Other articles of this Issue 4/2020

Journal of Mammary Gland Biology and Neoplasia 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine