Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 4/2019

01-12-2019 | Testicular Carcinoma

Redirecting Normal and Cancer Stem Cells to a Mammary Epithelial Cell Fate

Authors: Anastasia Frank-Kamenetskii, Brian W. Booth

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 4/2019

Login to get access

Abstract

Tissue microenvironments, also known as stem cell niches, influence not only resident cells but also cells in surrounding tissues. Physical and biochemical intercellular signals originating from resident stem cells or non-stem cells participate in the homeostasis of the tissue regulating cell proliferation, differentiation, wound healing, tissue remodeling, and tumorigenesis. In recent publications it has been demonstrated that the normal mouse mammary microenvironment can provide development and differentiation guidance to not only resident mammary cells but also cells of non-mammary origin including tumor-derived cells. When placed in reforming mammary stem cell niches the non-mammary cells proliferate and differentiate along mammary epithelial cell lineages and contribute progeny to reforming mammary gland outgrowths. The tumor-derived cells that are redirected to assume mammary epithelial phenotypes lose their cancer-forming capacity and shift their gene expression profiles from a cancer profile towards a normal mammary epithelial expression profile. This review summarizes the recent discoveries regarding the ability of the normal mouse mammary microenvironment to dictate the cell fates of non-mammary cells introduced into mammary stem cell niches.
Literature
1.
go back to reference Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.PubMed Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.PubMed
2.
go back to reference Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.PubMed Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.PubMed
3.
go back to reference Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803.PubMedPubMedCentral Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803.PubMedPubMedCentral
4.
go back to reference McBryan J, Howlin J. Pubertal mammary gland development: elucidation of in vivo morphogenesis using murine models. Methods Mol Biol. 2017;1501:77–114.PubMed McBryan J, Howlin J. Pubertal mammary gland development: elucidation of in vivo morphogenesis using murine models. Methods Mol Biol. 2017;1501:77–114.PubMed
5.
go back to reference DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.PubMed DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.PubMed
6.
go back to reference Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A. 1968;61(1):53–60.PubMedPubMedCentral Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A. 1968;61(1):53–60.PubMedPubMedCentral
7.
go back to reference Daniel CW, Deome KB. Growth of mouse mammary glands in vivo after monolayer culture. Science. 1965;149(3684):634–6.PubMed Daniel CW, Deome KB. Growth of mouse mammary glands in vivo after monolayer culture. Science. 1965;149(3684):634–6.PubMed
8.
go back to reference Hassiotou F, Geddes D. Anatomy of the human mammary gland: current status of knowledge. Clin Anat. 2013;26(1):29–48.PubMed Hassiotou F, Geddes D. Anatomy of the human mammary gland: current status of knowledge. Clin Anat. 2013;26(1):29–48.PubMed
9.
go back to reference Medina D. Stromal fibroblasts influence human mammary epithelial cell morphogenesis. Proc Natl Acad Sci U S A. 2004;101(14):4723–4.PubMedPubMedCentral Medina D. Stromal fibroblasts influence human mammary epithelial cell morphogenesis. Proc Natl Acad Sci U S A. 2004;101(14):4723–4.PubMedPubMedCentral
10.
go back to reference Gyorki DE, Asselin-Labat ML, van Rooijen N, Lindeman GJ, Visvader JE. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62.PubMedPubMedCentral Gyorki DE, Asselin-Labat ML, van Rooijen N, Lindeman GJ, Visvader JE. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62.PubMedPubMedCentral
11.
go back to reference Landskroner-Eiger S, Park J, Israel D, Pollard JW, Scherer PE. Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev Biol. 2010;344(2):968–78.PubMedPubMedCentral Landskroner-Eiger S, Park J, Israel D, Pollard JW, Scherer PE. Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev Biol. 2010;344(2):968–78.PubMedPubMedCentral
12.
go back to reference Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn. 2002;223(4):459–68.PubMed Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn. 2002;223(4):459–68.PubMed
13.
go back to reference Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.PubMed Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.PubMed
14.
go back to reference Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998;95(9):5076–81.PubMedPubMedCentral Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998;95(9):5076–81.PubMedPubMedCentral
15.
go back to reference Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77.PubMedPubMedCentral Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77.PubMedPubMedCentral
16.
go back to reference Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 1993;7(12A):2308–17.PubMed Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 1993;7(12A):2308–17.PubMed
17.
go back to reference Flanders KC, Wakefield LM. Transforming growth factor-(beta)s and mammary gland involution; functional roles and implications for cancer progression. J Mammary Gland Biol Neoplasia. 2009;14(2):131–44.PubMedPubMedCentral Flanders KC, Wakefield LM. Transforming growth factor-(beta)s and mammary gland involution; functional roles and implications for cancer progression. J Mammary Gland Biol Neoplasia. 2009;14(2):131–44.PubMedPubMedCentral
18.
go back to reference Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61.PubMed Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61.PubMed
19.
go back to reference Bruno RD, Smith GH. A potential mechanism for extracellular matrix induction of breast cancer cell normality. Breast Cancer Res. 2014;16(1):302.PubMedPubMedCentral Bruno RD, Smith GH. A potential mechanism for extracellular matrix induction of breast cancer cell normality. Breast Cancer Res. 2014;16(1):302.PubMedPubMedCentral
20.
go back to reference Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development. 1989;106(4):619–33.PubMed Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development. 1989;106(4):619–33.PubMed
21.
go back to reference Naylor MJ, Li N, Cheung J, Lowe ET, Lambert E, Marlow R, et al. Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol. 2005;171(4):717–28.PubMedPubMedCentral Naylor MJ, Li N, Cheung J, Lowe ET, Lambert E, Marlow R, et al. Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol. 2005;171(4):717–28.PubMedPubMedCentral
22.
go back to reference Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.PubMedPubMedCentral Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.PubMedPubMedCentral
23.
go back to reference Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7.PubMedPubMedCentral Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7.PubMedPubMedCentral
24.
go back to reference Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A. 2007;104(10):3871–6.PubMedPubMedCentral Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A. 2007;104(10):3871–6.PubMedPubMedCentral
25.
go back to reference Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci U S A. 2008;105(39):14891–6.PubMedPubMedCentral Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA, Smith GH. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci U S A. 2008;105(39):14891–6.PubMedPubMedCentral
26.
go back to reference Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, Salomon DS, et al. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by interaction with the mammary microenvironment. PLoS One. 2013;8(4):e62019.PubMedPubMedCentral Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, Salomon DS, et al. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by interaction with the mammary microenvironment. PLoS One. 2013;8(4):e62019.PubMedPubMedCentral
27.
go back to reference Boulanger CA, Bruno RD, Rosu-Myles M, Smith GH. The mouse mammary microenvironment redirects mesoderm-derived bone marrow cells to a mammary epithelial progenitor cell fate. Stem Cells Dev. 2012;21(6):948–54.PubMed Boulanger CA, Bruno RD, Rosu-Myles M, Smith GH. The mouse mammary microenvironment redirects mesoderm-derived bone marrow cells to a mammary epithelial progenitor cell fate. Stem Cells Dev. 2012;21(6):948–54.PubMed
28.
go back to reference Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23(41):6980–5.PubMed Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23(41):6980–5.PubMed
29.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMed
30.
go back to reference Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene. 2000;19(8):968–88.PubMed Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene. 2000;19(8):968–88.PubMed
31.
go back to reference Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992;89(22):10578–82.PubMedPubMedCentral Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992;89(22):10578–82.PubMedPubMedCentral
32.
go back to reference Booth BW, Boulanger CA, Anderson LH, Smith GH. The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene. 2010;30(6):679–89.PubMedPubMedCentral Booth BW, Boulanger CA, Anderson LH, Smith GH. The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene. 2010;30(6):679–89.PubMedPubMedCentral
33.
go back to reference Bussard KM, Smith GH. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. PLoS One. 2012;7(11):e49221.PubMedPubMedCentral Bussard KM, Smith GH. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. PLoS One. 2012;7(11):e49221.PubMedPubMedCentral
34.
go back to reference Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH. Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 2010;70:6336–43.PubMedPubMedCentral Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH. Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 2010;70:6336–43.PubMedPubMedCentral
35.
go back to reference Park JP, Blanding WM, Feltracco JA, Booth BW. Validation of an in vitro model of erbB2 cancer cell redirection. In Vitro Cell Dev Biol Anim. 2015;51:776–86.PubMed Park JP, Blanding WM, Feltracco JA, Booth BW. Validation of an in vitro model of erbB2 cancer cell redirection. In Vitro Cell Dev Biol Anim. 2015;51:776–86.PubMed
36.
go back to reference Roche K, Feltus FA, Park JP, Coissieux MM, Chang C, Chan VBS, et al. Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One. 2017;12(6):e0179265.PubMedPubMedCentral Roche K, Feltus FA, Park JP, Coissieux MM, Chang C, Chan VBS, et al. Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One. 2017;12(6):e0179265.PubMedPubMedCentral
37.
go back to reference Schmucker HS, Park JP, Coissieux MM, Bentires-Alj M, Feltus FA, Booth BW. RNA expression profiling reveals differentially regulated growth factor and receptor expression in redirected Cancer cells. Stem Cells Dev. 2017;26(9):646–55.PubMed Schmucker HS, Park JP, Coissieux MM, Bentires-Alj M, Feltus FA, Booth BW. RNA expression profiling reveals differentially regulated growth factor and receptor expression in redirected Cancer cells. Stem Cells Dev. 2017;26(9):646–55.PubMed
38.
go back to reference Bruno RD, Fleming JM, George AL, Boulanger CA, Schedin P, Smith GH. Mammary extracellular matrix directs differentiation of testicular and embryonic stem cells to form functional mammary glands in vivo. Sci Rep. 2017;7:40196.PubMedPubMedCentral Bruno RD, Fleming JM, George AL, Boulanger CA, Schedin P, Smith GH. Mammary extracellular matrix directs differentiation of testicular and embryonic stem cells to form functional mammary glands in vivo. Sci Rep. 2017;7:40196.PubMedPubMedCentral
39.
go back to reference Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013;94(2):75–92.PubMedPubMedCentral Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013;94(2):75–92.PubMedPubMedCentral
40.
go back to reference Tong J, Mou S, Xiong L, Wang Z, Wang R, Weigand A, et al. Adipose-derived mesenchymal stem cells formed acinar-like structure when stimulated with breast epithelial cells in three-dimensional culture. PLoS One. 2018;13(10):e0204077.PubMedPubMedCentral Tong J, Mou S, Xiong L, Wang Z, Wang R, Weigand A, et al. Adipose-derived mesenchymal stem cells formed acinar-like structure when stimulated with breast epithelial cells in three-dimensional culture. PLoS One. 2018;13(10):e0204077.PubMedPubMedCentral
41.
go back to reference Bruno RD, Reid J, Sachs PC. The revolution will be open-source: how 3D bioprinting can change 3D cell culture. Oncotarget. 2019;10(46):4724–6.PubMedPubMedCentral Bruno RD, Reid J, Sachs PC. The revolution will be open-source: how 3D bioprinting can change 3D cell culture. Oncotarget. 2019;10(46):4724–6.PubMedPubMedCentral
42.
go back to reference Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.PubMed Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.PubMed
43.
go back to reference Reid JA, Palmer XL, Mollica PA, Northam N, Sachs PC, Bruno RD. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep. 2019;9(1):7466.PubMedPubMedCentral Reid JA, Palmer XL, Mollica PA, Northam N, Sachs PC, Bruno RD. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep. 2019;9(1):7466.PubMedPubMedCentral
44.
go back to reference Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, et al. Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst. 1993;85(21):1725–32.PubMed Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, et al. Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst. 1993;85(21):1725–32.PubMed
45.
go back to reference Rauner G, Leviav A, Mavor E, Barash I. Development of foreign mammary epithelial morphology in the Stroma of Immunodeficient mice. PLoS One. 2013;8(6):e68637.PubMedPubMedCentral Rauner G, Leviav A, Mavor E, Barash I. Development of foreign mammary epithelial morphology in the Stroma of Immunodeficient mice. PLoS One. 2013;8(6):e68637.PubMedPubMedCentral
46.
go back to reference Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc. 2006;1(1):206–14.PubMed Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc. 2006;1(1):206–14.PubMed
Metadata
Title
Redirecting Normal and Cancer Stem Cells to a Mammary Epithelial Cell Fate
Authors
Anastasia Frank-Kamenetskii
Brian W. Booth
Publication date
01-12-2019
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 4/2019
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-019-09439-x

Other articles of this Issue 4/2019

Journal of Mammary Gland Biology and Neoplasia 4/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine