Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 3/2017

01-09-2017

In Vitro Validation of the Hippo Pathway as a Pharmacological Target for Canine Mammary Gland Tumors

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 3/2017

Login to get access

Abstract

Canine mammary tumors (CMTs) are the most common neoplasms in intact female dogs. Some clinical and molecular similarities between certain CMT subtypes and breast cancer make them a potential model for the study of the human disease. As misregulated Hippo signaling is thought to play an important role in breast cancer development and also occurs in CMTs, we sought to determine if Hippo represents a valid pharmacological target for the treatment of CMTs. Six CMT cell lines were assessed for their expression of the Hippo pathway effectors YAP and TAZ and for their sensitivity to verteporfin, an inhibitor of YAP-mediated transcriptional coactivation. Four cell lines that expressed YAP (CMT-9, −12, −28, −47) were found to be very sensitive to verteporfin treatment, which killed the cells through induction of apoptosis with ED50 values of 14–79 nM. Conversely, two YAP-negative cell lines (CF-35, CMT-25) were an order of magnitude more resistant to verteporfin. Verteporfin suppressed the expression of YAP/TAZ target genes, particularly CYR61 and CTGF, which play important roles in breast cancer development. Verteporfin was also able to inhibit cell migration and anchorage-independent growth. Likewise, verteporfin efficiently suppressed tumor cell invasiveness in the CMT-28 and -47 lines, but not in CF-35 cells. Together, our findings provide proof of principle that pharmacological targeting of the Hippo pathway compromises the viability and attenuates the malignant behavior of CMT cells. These results will serve as the basis for the development of novel chemotherapeutic approaches for CMTs that could translate to human medicine.
Literature
1.
go back to reference Sleeckx N, de Rooster H, Veldhuis Kroeze EJ, et al. Canine mammary tumours, an overview. Reprod Domest Anim. 2011;46(6):1112–31.CrossRefPubMed Sleeckx N, de Rooster H, Veldhuis Kroeze EJ, et al. Canine mammary tumours, an overview. Reprod Domest Anim. 2011;46(6):1112–31.CrossRefPubMed
2.
go back to reference Benjamin SA, Lee AC, Saunders WJ. Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in beagles. Vet Pathol. 1999;36(5):423–36.CrossRefPubMed Benjamin SA, Lee AC, Saunders WJ. Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in beagles. Vet Pathol. 1999;36(5):423–36.CrossRefPubMed
3.
go back to reference Sorenmo KU, Kristiansen VM, Cofone MA, et al. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet Comp Oncol. 2009;7(3):162–72.CrossRefPubMed Sorenmo KU, Kristiansen VM, Cofone MA, et al. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet Comp Oncol. 2009;7(3):162–72.CrossRefPubMed
4.
go back to reference Withrow SJ, Vail DM. Withrow & MacEwen's small animal clinical oncology. 4th ed. St. Louis, Mo.: Saunders Elsevier; 2007. 1 texte électronique (xvii, 846 ) p. Withrow SJ, Vail DM. Withrow & MacEwen's small animal clinical oncology. 4th ed. St. Louis, Mo.: Saunders Elsevier; 2007. 1 texte électronique (xvii, 846 ) p.
5.
go back to reference Meuten DJ, Moulton JE. Tumors in domestic animals. Fifth edition. ed. Ames, Iowa: Wiley Blackwell; 2017. viii, 989 pages p. Meuten DJ, Moulton JE. Tumors in domestic animals. Fifth edition. ed. Ames, Iowa: Wiley Blackwell; 2017. viii, 989 pages p.
6.
go back to reference Karayannopoulou M, Lafioniatis, S. Progrès récents chimiothérapie des tumeurs mammaires canines: examen des études de 2000 à ce jour. Revue de Médecine Vétérinaire. 2016;7–8(167):191–200. Karayannopoulou M, Lafioniatis, S. Progrès récents chimiothérapie des tumeurs mammaires canines: examen des études de 2000 à ce jour. Revue de Médecine Vétérinaire. 2016;7–8(167):191–200.
7.
go back to reference Simon D, Schoenrock D, Baumgartner W, et al. Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med. 2006;20(5):1184–90.PubMed Simon D, Schoenrock D, Baumgartner W, et al. Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med. 2006;20(5):1184–90.PubMed
8.
go back to reference Klopfleisch R, von Euler H, Sarli G, et al. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol. 2011;48(1):98–116.CrossRefPubMed Klopfleisch R, von Euler H, Sarli G, et al. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol. 2011;48(1):98–116.CrossRefPubMed
9.
go back to reference Marconato L, Lorenzo RM, Abramo F, et al. Adjuvant gemcitabine after surgical removal of aggressive malignant mammary tumours in dogs. Vet Comp Oncol. 2008;6(2):90–101.CrossRefPubMed Marconato L, Lorenzo RM, Abramo F, et al. Adjuvant gemcitabine after surgical removal of aggressive malignant mammary tumours in dogs. Vet Comp Oncol. 2008;6(2):90–101.CrossRefPubMed
10.
go back to reference Harvey KF, Zhang X, Thomas DM. The hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–57.CrossRefPubMed Harvey KF, Zhang X, Thomas DM. The hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–57.CrossRefPubMed
11.
go back to reference Johnson R, Halder G. The two faces of hippo: targeting the hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13(1):63–79.CrossRefPubMed Johnson R, Halder G. The two faces of hippo: targeting the hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13(1):63–79.CrossRefPubMed
12.
13.
go back to reference Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.CrossRefPubMedPubMedCentral Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.CrossRefPubMedPubMedCentral
14.
go back to reference Zhao B, Li L, Wang L, et al. Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26(1):54–68.CrossRefPubMedPubMedCentral Zhao B, Li L, Wang L, et al. Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26(1):54–68.CrossRefPubMedPubMedCentral
15.
go back to reference Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591–600.CrossRefPubMed Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591–600.CrossRefPubMed
16.
go back to reference Low BC, Pan CQ, Shivashankar GV, et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588(16):2663–70.CrossRefPubMed Low BC, Pan CQ, Shivashankar GV, et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588(16):2663–70.CrossRefPubMed
17.
go back to reference Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011;138(18):3907–14.CrossRefPubMed Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011;138(18):3907–14.CrossRefPubMed
20.
go back to reference Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287–312.CrossRefPubMed Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94(4):1287–312.CrossRefPubMed
21.
go back to reference Morin-Kensicki EM, Boone BN, Howell M, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77–87.CrossRefPubMedPubMedCentral Morin-Kensicki EM, Boone BN, Howell M, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77–87.CrossRefPubMedPubMedCentral
22.
go back to reference Hossain Z, Ali SM, Ko HL, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6.CrossRefPubMedPubMedCentral Hossain Z, Ali SM, Ko HL, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6.CrossRefPubMedPubMedCentral
23.
go back to reference Makita R, Uchijima Y, Nishiyama K, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Ren Physiol. 2008;294(3):F542–53.CrossRef Makita R, Uchijima Y, Nishiyama K, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Ren Physiol. 2008;294(3):F542–53.CrossRef
24.
go back to reference Vlug EJ, van de Ven RA, Vermeulen JF, et al. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36(5):375–84.CrossRef Vlug EJ, van de Ven RA, Vermeulen JF, et al. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol (Dordr). 2013;36(5):375–84.CrossRef
25.
go back to reference Chen Q, Zhang N, Gray RS, et al. A temporal requirement for hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 2014;28(5):432–7.CrossRefPubMedPubMedCentral Chen Q, Zhang N, Gray RS, et al. A temporal requirement for hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 2014;28(5):432–7.CrossRefPubMedPubMedCentral
28.
go back to reference Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–90.CrossRefPubMed Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–90.CrossRefPubMed
29.
go back to reference Cordenonsi M, Zanconato F, Azzolin L, et al. The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72.CrossRefPubMed Cordenonsi M, Zanconato F, Azzolin L, et al. The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72.CrossRefPubMed
30.
go back to reference Lamar JM, Stern P, Liu H, et al. The hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A. 2012;109(37):E2441–50.CrossRefPubMedPubMedCentral Lamar JM, Stern P, Liu H, et al. The hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A. 2012;109(37):E2441–50.CrossRefPubMedPubMedCentral
31.
go back to reference Shi P, Feng J, Chen C. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin Shanghai. 2015;47(1):53–9.CrossRefPubMed Shi P, Feng J, Chen C. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin Shanghai. 2015;47(1):53–9.CrossRefPubMed
32.
go back to reference Chan SW, Lim CJ, Guo K, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.CrossRefPubMed Chan SW, Lim CJ, Guo K, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.CrossRefPubMed
33.
go back to reference Beffagna G, Sacchetto R, Cavicchioli L, et al. A preliminary investigation of the role of the transcription co-activators YAP/TAZ of the hippo signalling pathway in canine and feline mammary tumours. Vet J. 2016;207:105–11.CrossRefPubMed Beffagna G, Sacchetto R, Cavicchioli L, et al. A preliminary investigation of the role of the transcription co-activators YAP/TAZ of the hippo signalling pathway in canine and feline mammary tumours. Vet J. 2016;207:105–11.CrossRefPubMed
34.
go back to reference Bressler NM. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2002;133(1):168–9.CrossRefPubMed Bressler NM. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2002;133(1):168–9.CrossRefPubMed
35.
go back to reference Blinder KJ, Blumenkranz MS, Bressler NM, et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Ophthalmology. 2003;110(4):667–73.CrossRefPubMed Blinder KJ, Blumenkranz MS, Bressler NM, et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Ophthalmology. 2003;110(4):667–73.CrossRefPubMed
36.
go back to reference Wang C, Zhu X, Feng W, et al. Verteporfin inhibits YAP function through up-regulating 14-3-3sigma sequestering YAP in the cytoplasm. Am J Cancer Res. 2016;6(1):27–37.PubMed Wang C, Zhu X, Feng W, et al. Verteporfin inhibits YAP function through up-regulating 14-3-3sigma sequestering YAP in the cytoplasm. Am J Cancer Res. 2016;6(1):27–37.PubMed
37.
go back to reference Wei H, Wang F, Wang Y, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of PDAC via disrupting the YAP-TEAD complex. Cancer Sci 2016. Wei H, Wang F, Wang Y, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of PDAC via disrupting the YAP-TEAD complex. Cancer Sci 2016.
38.
go back to reference Feng J, Gou J, Jia J, et al. Verteporfin, a suppressor of YAP-TEAD complex, presents promising antitumor properties on ovarian cancer. Onco Targets Ther. 2016;9:5371–81.CrossRefPubMedPubMedCentral Feng J, Gou J, Jia J, et al. Verteporfin, a suppressor of YAP-TEAD complex, presents promising antitumor properties on ovarian cancer. Onco Targets Ther. 2016;9:5371–81.CrossRefPubMedPubMedCentral
39.
40.
go back to reference Ma YW, Liu YZ, Pan JX. Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res. 2016;6(12):2816–30.PubMedPubMedCentral Ma YW, Liu YZ, Pan JX. Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res. 2016;6(12):2816–30.PubMedPubMedCentral
41.
go back to reference Zhang H, Ramakrishnan SK, Triner D, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8(397):ra98. Zhang H, Ramakrishnan SK, Triner D, et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal. 2015;8(397):ra98.
42.
go back to reference Li H, Huang Z, Gao M, et al. Inhibition of YAP suppresses CML cell proliferation and enhances efficacy of imatinib in vitro and in vivo. J Exp Clin Cancer Res. 2016;35(1):134.CrossRefPubMedPubMedCentral Li H, Huang Z, Gao M, et al. Inhibition of YAP suppresses CML cell proliferation and enhances efficacy of imatinib in vitro and in vivo. J Exp Clin Cancer Res. 2016;35(1):134.CrossRefPubMedPubMedCentral
43.
go back to reference Donohue E, Thomas A, Maurer N, et al. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer. 2013;4(7):585–96.CrossRefPubMedPubMedCentral Donohue E, Thomas A, Maurer N, et al. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer. 2013;4(7):585–96.CrossRefPubMedPubMedCentral
44.
go back to reference Lutful Kabir FM, Agarwal P, Deinnocentes P, et al. Novel frameshift mutation in the p16/INK4A tumor suppressor gene in canine breast cancer alters expression from the p16/INK4A/p14ARF locus. J Cell Biochem. 2013;114(1):56–66.CrossRefPubMed Lutful Kabir FM, Agarwal P, Deinnocentes P, et al. Novel frameshift mutation in the p16/INK4A tumor suppressor gene in canine breast cancer alters expression from the p16/INK4A/p14ARF locus. J Cell Biochem. 2013;114(1):56–66.CrossRefPubMed
45.
go back to reference DeInnocentes P, Li LX, Sanchez RL, et al. Expression and sequence of canine SIRT2 and p53 genes in canine mammary tumour cells - effects on downstream targets Wip1 and p21/Cip1. Vet Comp Oncol. 2006;4(3):161–77.CrossRefPubMed DeInnocentes P, Li LX, Sanchez RL, et al. Expression and sequence of canine SIRT2 and p53 genes in canine mammary tumour cells - effects on downstream targets Wip1 and p21/Cip1. Vet Comp Oncol. 2006;4(3):161–77.CrossRefPubMed
46.
go back to reference Stokol T, Daddona JL, Mubayed LS, et al. Evaluation of tissue factor expression in canine tumor cells. Am J Vet Res. 2011;72(8):1097–106.CrossRefPubMed Stokol T, Daddona JL, Mubayed LS, et al. Evaluation of tissue factor expression in canine tumor cells. Am J Vet Res. 2011;72(8):1097–106.CrossRefPubMed
47.
go back to reference Abedini A, Zamberlam G, Lapointe E, et al. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J. 2016;30(4):1534–47.CrossRefPubMed Abedini A, Zamberlam G, Lapointe E, et al. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J. 2016;30(4):1534–47.CrossRefPubMed
48.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMed
49.
go back to reference Santucci M, Vignudelli T, Ferrari S, et al. The hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem. 2015;58(12):4857–73.CrossRefPubMed Santucci M, Vignudelli T, Ferrari S, et al. The hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem. 2015;58(12):4857–73.CrossRefPubMed
50.
go back to reference Fu D, Lv X, Hua G, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer. 2014;21(2):297–310.CrossRefPubMedPubMedCentral Fu D, Lv X, Hua G, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer. 2014;21(2):297–310.CrossRefPubMedPubMedCentral
52.
go back to reference Maugeri-Sacca M, De Maria R. Hippo pathway and breast cancer stem cells. Crit Rev Oncol Hematol. 2016;99:115–22.CrossRefPubMed Maugeri-Sacca M, De Maria R. Hippo pathway and breast cancer stem cells. Crit Rev Oncol Hematol. 2016;99:115–22.CrossRefPubMed
54.
go back to reference Tsai MS, Bogart DF, Castaneda JM, et al. Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene. 2002;21(53):8178–85.CrossRefPubMed Tsai MS, Bogart DF, Castaneda JM, et al. Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene. 2002;21(53):8178–85.CrossRefPubMed
55.
go back to reference Jiang WG, Watkins G, Fodstad O, et al. Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer. 2004;11(4):781–91.CrossRefPubMed Jiang WG, Watkins G, Fodstad O, et al. Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer. 2004;11(4):781–91.CrossRefPubMed
56.
go back to reference Sanchez-Bailon MP, Calcabrini A, Mayoral-Varo V, et al. Cyr61 as mediator of Src signaling in triple negative breast cancer cells. Oncotarget. 2015;6(15):13520–38.CrossRefPubMedPubMedCentral Sanchez-Bailon MP, Calcabrini A, Mayoral-Varo V, et al. Cyr61 as mediator of Src signaling in triple negative breast cancer cells. Oncotarget. 2015;6(15):13520–38.CrossRefPubMedPubMedCentral
57.
go back to reference Espinoza I, Menendez JA, Kvp CM, et al. CCN1 promotes vascular endothelial growth factor secretion through alphavbeta 3 integrin receptors in breast cancer. J Cell Commun Signal. 2014;8(1):23–7.CrossRefPubMed Espinoza I, Menendez JA, Kvp CM, et al. CCN1 promotes vascular endothelial growth factor secretion through alphavbeta 3 integrin receptors in breast cancer. J Cell Commun Signal. 2014;8(1):23–7.CrossRefPubMed
58.
go back to reference Harris LG, Pannell LK, Singh S, et al. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene. 2012;31(28):3370–80.CrossRefPubMed Harris LG, Pannell LK, Singh S, et al. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene. 2012;31(28):3370–80.CrossRefPubMed
59.
go back to reference Xie D, Nakachi K, Wang H, et al. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001;61(24):8917–23.PubMed Xie D, Nakachi K, Wang H, et al. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001;61(24):8917–23.PubMed
60.
go back to reference Wang MY, Chen PS, Prakash E, et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 2009;69(8):3482–91.CrossRefPubMed Wang MY, Chen PS, Prakash E, et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 2009;69(8):3482–91.CrossRefPubMed
61.
go back to reference Chien W, O'Kelly J, Lu D, et al. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. Int J Oncol. 2011;38(6):1741–7.PubMedPubMedCentral Chien W, O'Kelly J, Lu D, et al. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. Int J Oncol. 2011;38(6):1741–7.PubMedPubMedCentral
62.
go back to reference Lai D, Ho KC, Hao Y, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728–38.CrossRefPubMed Lai D, Ho KC, Hao Y, et al. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71(7):2728–38.CrossRefPubMed
63.
go back to reference Morishita T, Hayakawa F, Sugimoto K, et al. The photosensitizer verteporfin has light-independent anti-leukemic activity for Ph-positive acute lymphoblastic leukemia and synergistically works with dasatinib. Oncotarget. 2016;7(35):56241–52.CrossRefPubMedPubMedCentral Morishita T, Hayakawa F, Sugimoto K, et al. The photosensitizer verteporfin has light-independent anti-leukemic activity for Ph-positive acute lymphoblastic leukemia and synergistically works with dasatinib. Oncotarget. 2016;7(35):56241–52.CrossRefPubMedPubMedCentral
64.
go back to reference Ciamporcero E, Shen H, Ramakrishnan S, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35(12):1541–53.CrossRefPubMed Ciamporcero E, Shen H, Ramakrishnan S, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 2016;35(12):1541–53.CrossRefPubMed
65.
go back to reference Hussain RN, Jmor F, Damato B, et al. Verteporfin photodynamic therapy for the treatment of choroidal haemangioma associated with Sturge-weber syndrome. Photodiagn Photodyn Ther. 2016;15:143–6.CrossRef Hussain RN, Jmor F, Damato B, et al. Verteporfin photodynamic therapy for the treatment of choroidal haemangioma associated with Sturge-weber syndrome. Photodiagn Photodyn Ther. 2016;15:143–6.CrossRef
66.
go back to reference Gupta R, Browning AC, Wu K, et al. Verteporfin photodynamic therapy for the treatment of persistent subfoveal choroidal neovascularization after external beam radiotherapy: one-year results. Am J Ophthalmol. 2005;139(3):561–2.CrossRefPubMed Gupta R, Browning AC, Wu K, et al. Verteporfin photodynamic therapy for the treatment of persistent subfoveal choroidal neovascularization after external beam radiotherapy: one-year results. Am J Ophthalmol. 2005;139(3):561–2.CrossRefPubMed
67.
go back to reference Mori R, Kelkar A, De Laey JJ. Photodynamic therapy with verteporfin in Belgian patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Bull Soc Belge Ophtalmol. 2006;299:57–64. Mori R, Kelkar A, De Laey JJ. Photodynamic therapy with verteporfin in Belgian patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Bull Soc Belge Ophtalmol. 2006;299:57–64.
68.
go back to reference Tayanithi P, Pisankosakul P, Laksakapuk P. Treatment of subfoveal choroidal neovascularization secondary to age related macular degeneration with single treatment of verteporfin photodynamic therapy: a safety and short-term outcome. J Med Assoc Thail. 2004;87(Suppl 2):S78–82. Tayanithi P, Pisankosakul P, Laksakapuk P. Treatment of subfoveal choroidal neovascularization secondary to age related macular degeneration with single treatment of verteporfin photodynamic therapy: a safety and short-term outcome. J Med Assoc Thail. 2004;87(Suppl 2):S78–82.
70.
go back to reference Likus W, Siemianowicz K, Bienk K, et al. Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat. 2016;25:13–25.CrossRefPubMed Likus W, Siemianowicz K, Bienk K, et al. Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat. 2016;25:13–25.CrossRefPubMed
71.
go back to reference Wang Z, Wu Y, Wang H, et al. Interplay of mevalonate and hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A 2014;111(1):E89–E98. Wang Z, Wu Y, Wang H, et al. Interplay of mevalonate and hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A 2014;111(1):E89–E98.
72.
73.
go back to reference Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16(4):357–66.CrossRefPubMed Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16(4):357–66.CrossRefPubMed
74.
go back to reference Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135(1):261–9.CrossRefPubMed Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135(1):261–9.CrossRefPubMed
Metadata
Title
In Vitro Validation of the Hippo Pathway as a Pharmacological Target for Canine Mammary Gland Tumors
Publication date
01-09-2017
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 3/2017
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-017-9384-9
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine