Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 2/2014

01-07-2014

Hormonal Regulation of the Immune Microenvironment in the Mammary Gland

Authors: Eleanor F. Need, Vahid Atashgaran, Wendy V. Ingman, Pallave Dasari

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 2/2014

Login to get access

Abstract

It is well established that the development and homeostasis of the mammary gland are highly dependent upon the actions of ovarian hormones progesterone and estrogen, as well as the availability of prolactin for the pregnant and lactating gland. More recently it has become apparent that immune system cells and cytokines play essential roles in both mammary gland development as well as breast cancer. Here, we review hormonal effects on mammary gland biology during puberty, menstrual cycling, pregnancy, lactation and involution, and dissect how hormonal control of the immune system may contribute to mammary development at each stage via cytokine secretion and recruitment of macrophages, eosinophils, mast cells and lymphocytes. Collectively, these alterations may create an immunotolerant or inflammatory immune environment at specific developmental stages or phases of the menstrual cycle. Of particular interest for further research is investigation of the combinatorial actions of progesterone and estrogen during the luteal phase of the menstrual cycle and key developmental points where the immune system may play an active role both in mammary development as well as in the creation of an immunotolerant environment, thereby affecting breast cancer risk.
Literature
2.
go back to reference Chua AC, Hodson LJ, Moldenhauer LM, Robertson SA, Ingman WV. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development. 2010;137(24):4229–38. doi:10.1242/dev.059261.PubMedCrossRef Chua AC, Hodson LJ, Moldenhauer LM, Robertson SA, Ingman WV. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development. 2010;137(24):4229–38. doi:10.​1242/​dev.​059261.PubMedCrossRef
3.
go back to reference Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ et al. Epidermal growth factor receptor (EGFR)-signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology. 2014:en20131933. doi:10.1210/en.2013-1933. Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ et al. Epidermal growth factor receptor (EGFR)-signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology. 2014:en20131933. doi:10.​1210/​en.​2013-1933.
6.
go back to reference Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur J Immunol. 2012. doi:10.1002/eji.201142317. Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur J Immunol. 2012. doi:10.​1002/​eji.​201142317.
8.
go back to reference Cancer CGoHFiB. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. doi:10.1016/S1470-2045(12)70425-4.CrossRef Cancer CGoHFiB. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. doi:10.​1016/​S1470-2045(12)70425-4.CrossRef
10.
12.
go back to reference Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15(1):17–35.PubMed Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15(1):17–35.PubMed
13.
go back to reference Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.PubMedCentralPubMedCrossRef Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.PubMedCentralPubMedCrossRef
17.
go back to reference Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–46.PubMedCrossRef Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17(3):138–46.PubMedCrossRef
19.
go back to reference Lwin KY, Sloane JP, Zuccarini O, Beverley PC. An immunohistological study of leukocyte localization in benign and malignant breast tissue. Int J Cancer. 1985;36(4):433–8.PubMedCrossRef Lwin KY, Sloane JP, Zuccarini O, Beverley PC. An immunohistological study of leukocyte localization in benign and malignant breast tissue. Int J Cancer. 1985;36(4):433–8.PubMedCrossRef
20.
go back to reference Zuk JA, Walker RA. Immunohistochemical analysis of HLA antigens and mononuclear infiltrates of benign and malignant breast. J Pathol. 1987;152(4):275–85.PubMedCrossRef Zuk JA, Walker RA. Immunohistochemical analysis of HLA antigens and mononuclear infiltrates of benign and malignant breast. J Pathol. 1987;152(4):275–85.PubMedCrossRef
22.
go back to reference Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–79.PubMed Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–79.PubMed
23.
go back to reference Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2(1):5–73.PubMedCrossRef Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2(1):5–73.PubMedCrossRef
25.
go back to reference Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103(7):2196–201.PubMedCentralPubMedCrossRef Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103(7):2196–201.PubMedCentralPubMedCrossRef
26.
go back to reference Nautiyal J, Steel JH, Mane MR, Oduwole O, Poliandri A, Alexi X, et al. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development. 2013;140(5):1079–89.PubMedCentralPubMedCrossRef Nautiyal J, Steel JH, Mane MR, Oduwole O, Poliandri A, Alexi X, et al. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development. 2013;140(5):1079–89.PubMedCentralPubMedCrossRef
27.
go back to reference Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci. 2000;97(12):6379–84.PubMedCentralPubMedCrossRef Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci. 2000;97(12):6379–84.PubMedCentralPubMedCrossRef
28.
go back to reference Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc Natl Acad Sci. 1998;95(26):15677–82.PubMedCentralPubMedCrossRef Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc Natl Acad Sci. 1998;95(26):15677–82.PubMedCentralPubMedCrossRef
29.
go back to reference Yeh S, Tsai M-Y, Xu Q, Mu X-M, Lardy H, Huang K-E, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: An in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci. 2002;99(21):13498–503. doi:10.1073/pnas.212474399.PubMedCentralPubMedCrossRef Yeh S, Tsai M-Y, Xu Q, Mu X-M, Lardy H, Huang K-E, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: An in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci. 2002;99(21):13498–503. doi:10.​1073/​pnas.​212474399.PubMedCentralPubMedCrossRef
30.
go back to reference Peters AA, Ingman WV, Tilley WD, Butler LM. Differential effects of exogenous androgen and an androgen receptor antagonist in the peri- and postpubertal murine mammary gland. Endocrinology. 2011;152(10):3728–37. doi:10.1210/en.2011-1133.PubMedCrossRef Peters AA, Ingman WV, Tilley WD, Butler LM. Differential effects of exogenous androgen and an androgen receptor antagonist in the peri- and postpubertal murine mammary gland. Endocrinology. 2011;152(10):3728–37. doi:10.​1210/​en.​2011-1133.PubMedCrossRef
31.
go back to reference Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc Natl Acad Sci. 2007;104(13):5455–60.PubMedCentralPubMedCrossRef Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc Natl Acad Sci. 2007;104(13):5455–60.PubMedCentralPubMedCrossRef
32.
go back to reference Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 1999;126(2):335–44.PubMed Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 1999;126(2):335–44.PubMed
33.
go back to reference Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, et al. Prolactin, Growth Hormone, and Epidermal Growth Factor Activate Stat5 in Different Compartments of Mammary Tissue and Exert Different and Overlapping Developmental Effects. Dev Biol. 2001;229(1):163–75. doi:10.1006/dbio.2000.9961.PubMedCrossRef Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, et al. Prolactin, Growth Hormone, and Epidermal Growth Factor Activate Stat5 in Different Compartments of Mammary Tissue and Exert Different and Overlapping Developmental Effects. Dev Biol. 2001;229(1):163–75. doi:10.​1006/​dbio.​2000.​9961.PubMedCrossRef
35.
go back to reference Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMed Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMed
36.
go back to reference Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9. doi:10.1002/dvdy.20972.PubMedCrossRef Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9. doi:10.​1002/​dvdy.​20972.PubMedCrossRef
37.
go back to reference Fleming JM, Miller TC, Kidacki M, Ginsburg E, Stuelten CH, Stewart DA, et al. Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo. Breast Cancer Res. 2012;14(3):R97. doi:10.1186/bcr3215.PubMedCentralPubMedCrossRef Fleming JM, Miller TC, Kidacki M, Ginsburg E, Stuelten CH, Stewart DA, et al. Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo. Breast Cancer Res. 2012;14(3):R97. doi:10.​1186/​bcr3215.PubMedCentralPubMedCrossRef
40.
go back to reference Fanger H, Ree HJ. Cyclic changes of human mammary gland epithelium in relation to the menstrual cycle—an ultrastructural study. Cancer. 1974;34(3):574–85.CrossRef Fanger H, Ree HJ. Cyclic changes of human mammary gland epithelium in relation to the menstrual cycle—an ultrastructural study. Cancer. 1974;34(3):574–85.CrossRef
41.
go back to reference Vogel P, Georgiade N, Fetter B, Vogel F, McCarty Jr K. The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol. 1981;104(1):23.PubMedCentralPubMed Vogel P, Georgiade N, Fetter B, Vogel F, McCarty Jr K. The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol. 1981;104(1):23.PubMedCentralPubMed
42.
go back to reference Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef
43.
go back to reference Navarrete M, Maier CM, Falzoni R, Quadros L, Lima GR, Baracat EC, et al. Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res. 2005;7(3):R306–13.PubMedCentralPubMedCrossRef Navarrete M, Maier CM, Falzoni R, Quadros L, Lima GR, Baracat EC, et al. Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res. 2005;7(3):R306–13.PubMedCentralPubMedCrossRef
44.
go back to reference Söderqvist G, Isaksson E, von Schoultz B, Carlström K, Tani E, Skoog L. Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol. 1997;176(1):123–8.PubMedCrossRef Söderqvist G, Isaksson E, von Schoultz B, Carlström K, Tani E, Skoog L. Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol. 1997;176(1):123–8.PubMedCrossRef
45.
go back to reference Potten CS, Watson R, Williams G, Tickle S, Roberts SA, Harris M, et al. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer. 1988;58(2):163.PubMedCentralPubMedCrossRef Potten CS, Watson R, Williams G, Tickle S, Roberts SA, Harris M, et al. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer. 1988;58(2):163.PubMedCentralPubMedCrossRef
47.
go back to reference Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef
48.
go back to reference Walker NI, Bennett RE, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat. 1989;185(1):19–32.PubMedCrossRef Walker NI, Bennett RE, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat. 1989;185(1):19–32.PubMedCrossRef
49.
go back to reference Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119–26.PubMedCrossRef Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119–26.PubMedCrossRef
51.
53.
go back to reference Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890–8. doi:10.1172/jci1112.PubMedCentralPubMedCrossRef Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890–8. doi:10.​1172/​jci1112.PubMedCentralPubMedCrossRef
55.
go back to reference Lindsey WF, Das Gupta TK, Beattie CW. Influence of the Estrous Cycle during Carcinogen Exposure on Nitrosomethylurea-induced Rat Mammary Carcinoma. Cancer Res. 1981;41(10):3857–62.PubMed Lindsey WF, Das Gupta TK, Beattie CW. Influence of the Estrous Cycle during Carcinogen Exposure on Nitrosomethylurea-induced Rat Mammary Carcinoma. Cancer Res. 1981;41(10):3857–62.PubMed
56.
go back to reference Smith M, Freeman M, Neill J. The Control of Progesterone Secretion During the Estrous Cycle and Early Pseudopregnancy in the Rat: Prolactin, Gonadotropin and Steroid Levels Associated with Rescue of the Corpus Luteum of Pseudopregnancy 1 2. Endocrinology. 1975;96(1):219–26.PubMedCrossRef Smith M, Freeman M, Neill J. The Control of Progesterone Secretion During the Estrous Cycle and Early Pseudopregnancy in the Rat: Prolactin, Gonadotropin and Steroid Levels Associated with Rescue of the Corpus Luteum of Pseudopregnancy 1 2. Endocrinology. 1975;96(1):219–26.PubMedCrossRef
57.
go back to reference Faas M, Bouman A, Moesa H, Heineman MJ, de Leij L, Schuiling G. The immune response during the luteal phase of the ovarian cycle: a Th2-type response? Fertil Steril. 2000;74(5):1008–13.PubMedCrossRef Faas M, Bouman A, Moesa H, Heineman MJ, de Leij L, Schuiling G. The immune response during the luteal phase of the ovarian cycle: a Th2-type response? Fertil Steril. 2000;74(5):1008–13.PubMedCrossRef
58.
go back to reference Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the CD4+ CD25+ regulatory T cell compartment. J Immunol. 2004;173(4):2227–30.PubMedCrossRef Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the CD4+ CD25+ regulatory T cell compartment. J Immunol. 2004;173(4):2227–30.PubMedCrossRef
59.
go back to reference Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4 + CD25 + and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol. 2007;178(4):2572–8.PubMedCrossRef Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4 + CD25 + and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol. 2007;178(4):2572–8.PubMedCrossRef
60.
go back to reference Dasari P, Sharkey DJ, Noordin E, Glynn DJ, Hodson LJ, Chin PY, et al. Hormonal regulation of the cytokine microenvironment in the mammary gland Manuscript submitted. 2014. Dasari P, Sharkey DJ, Noordin E, Glynn DJ, Hodson LJ, Chin PY, et al. Hormonal regulation of the cytokine microenvironment in the mammary gland Manuscript submitted. 2014.
61.
go back to reference Brannstrom M, Friden BE, Jasper M, Norman RJ. Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):213–7.PubMedCrossRef Brannstrom M, Friden BE, Jasper M, Norman RJ. Variations in peripheral blood levels of immunoreactive tumor necrosis factor alpha (TNFalpha) throughout the menstrual cycle and secretion of TNFalpha from the human corpus luteum. Eur J Obstet Gynecol Reprod Biol. 1999;83(2):213–7.PubMedCrossRef
63.
go back to reference Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci. 2003;100(17):9744–9.PubMedCentralPubMedCrossRef Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci. 2003;100(17):9744–9.PubMedCentralPubMedCrossRef
64.
go back to reference Leong DA, Frawley LS, Neill JD. Neuroendocrine control of prolactin secretion. Annu Rev Physiol. 1983;45(1):109–27.PubMedCrossRef Leong DA, Frawley LS, Neill JD. Neuroendocrine control of prolactin secretion. Annu Rev Physiol. 1983;45(1):109–27.PubMedCrossRef
65.
go back to reference Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, et al. Receptor activator of NF-κB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem. 2003;278(46):46171–8.PubMedCrossRef Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, et al. Receptor activator of NF-κB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem. 2003;278(46):46171–8.PubMedCrossRef
67.
go back to reference Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol. 2009;328(1):127–39.PubMedCrossRef Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol. 2009;328(1):127–39.PubMedCrossRef
68.
go back to reference Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107(6):763–75.PubMedCrossRef Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107(6):763–75.PubMedCrossRef
69.
go back to reference Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.PubMedCrossRef Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.PubMedCrossRef
70.
go back to reference Fornetti J, Jindal S, Middleton KA, Borges VF, Schedin P. Physiological COX-2 Expression in Breast Epithelium Associates with COX-2 Levels in Ductal Carcinoma < i > in Situ</i > and Invasive Breast Cancer in Young Women. Am J Pathol. 2014;184(4):1219–29.PubMedCrossRef Fornetti J, Jindal S, Middleton KA, Borges VF, Schedin P. Physiological COX-2 Expression in Breast Epithelium Associates with COX-2 Levels in Ductal Carcinoma < i > in Situ</i > and Invasive Breast Cancer in Young Women. Am J Pathol. 2014;184(4):1219–29.PubMedCrossRef
75.
go back to reference Gonen E, Vallon-Eberhard A, Elazar S, Harmelin A, Brenner O, Rosenshine I, et al. Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis. Cell Microbiol. 2007;9(12):2826–38. doi:10.1111/j.1462-5822.2007.00999.x.PubMedCrossRef Gonen E, Vallon-Eberhard A, Elazar S, Harmelin A, Brenner O, Rosenshine I, et al. Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis. Cell Microbiol. 2007;9(12):2826–38. doi:10.​1111/​j.​1462-5822.​2007.​00999.​x.PubMedCrossRef
77.
go back to reference Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266–71.PubMedCrossRef Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266–71.PubMedCrossRef
80.
go back to reference Mackern-Oberti JP, Valdez SR, Vargas-Roig LM, Jahn GA. Impaired mammary gland T cell population during early lactation in hypoprolactinemic lactation-deficient rats. Reproduction (Cambridge, England). 2013;146(3):233–42. doi:10.1530/rep-12-0387.CrossRef Mackern-Oberti JP, Valdez SR, Vargas-Roig LM, Jahn GA. Impaired mammary gland T cell population during early lactation in hypoprolactinemic lactation-deficient rats. Reproduction (Cambridge, England). 2013;146(3):233–42. doi:10.​1530/​rep-12-0387.CrossRef
81.
go back to reference Khaled WT, Read EK, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development. 2007;134(15):2739–50. doi:10.1242/dev.003194.PubMedCrossRef Khaled WT, Read EK, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development. 2007;134(15):2739–50. doi:10.​1242/​dev.​003194.PubMedCrossRef
82.
go back to reference Miyaura H, Iwata M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol. 2002;168(3):1087–94.PubMedCrossRef Miyaura H, Iwata M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol. 2002;168(3):1087–94.PubMedCrossRef
83.
go back to reference Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia. 2009;14(2):181–91.PubMedCentralPubMedCrossRef Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia. 2009;14(2):181–91.PubMedCentralPubMedCrossRef
84.
go back to reference Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13(19):2604–16.PubMedCentralPubMedCrossRef Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13(19):2604–16.PubMedCentralPubMedCrossRef
85.
go back to reference Bierie B, Gorska AE, Stover DG, Moses HL. TGF‐β promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol. 2009;219(1):57–68.PubMedCentralPubMedCrossRef Bierie B, Gorska AE, Stover DG, Moses HL. TGF‐β promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol. 2009;219(1):57–68.PubMedCentralPubMedCrossRef
86.
go back to reference O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75.PubMedCrossRef O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75.PubMedCrossRef
87.
go back to reference O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2011. doi:10.1242/dev.071696.PubMed O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2011. doi:10.​1242/​dev.​071696.PubMed
89.
go back to reference Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralPubMedCrossRef Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralPubMedCrossRef
90.
go back to reference Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7.PubMedCrossRef Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7.PubMedCrossRef
92.
go back to reference Wood CE, Branstetter D, Jacob AP, Cline JM, Register TC, Rohrbach K, et al. Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res. 2013;15(4):R62.PubMedCentralPubMedCrossRef Wood CE, Branstetter D, Jacob AP, Cline JM, Register TC, Rohrbach K, et al. Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res. 2013;15(4):R62.PubMedCentralPubMedCrossRef
93.
go back to reference Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN, et al. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Res Treat. 2012;133(2):617–34.PubMedCrossRef Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN, et al. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Res Treat. 2012;133(2):617–34.PubMedCrossRef
94.
go back to reference Dep Prete A, Allavena P, Santoro G, Fumarulo R, Corsi MM, Mantovani A. Molecular pathways in cancer-related inflammation. Biochemia Medica. 2011;21(3):264–75.CrossRef Dep Prete A, Allavena P, Santoro G, Fumarulo R, Corsi MM, Mantovani A. Molecular pathways in cancer-related inflammation. Biochemia Medica. 2011;21(3):264–75.CrossRef
96.
go back to reference Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12(12):1372–9.PubMedCrossRef Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12(12):1372–9.PubMedCrossRef
97.
go back to reference Anderson T, Ferguson D, Raab G. Cell turnover in the“ resting” human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer. 1982;46(3):376.PubMedCentralPubMedCrossRef Anderson T, Ferguson D, Raab G. Cell turnover in the“ resting” human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer. 1982;46(3):376.PubMedCentralPubMedCrossRef
Metadata
Title
Hormonal Regulation of the Immune Microenvironment in the Mammary Gland
Authors
Eleanor F. Need
Vahid Atashgaran
Wendy V. Ingman
Pallave Dasari
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 2/2014
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-014-9324-x

Other articles of this Issue 2/2014

Journal of Mammary Gland Biology and Neoplasia 2/2014 Go to the issue

Preface

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine